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ABSTRACT 
 

Data Clustering is one of the most important issues in data mining and machine 

learning. Clustering is a task of discovering homogenous groups of the studied 

objects. Recently, many researchers have a significant interest in developing 

clustering algorithms. The most problem in clustering is that we do not have 

prior information knowledge about the given dataset. Moreover, the choice of 

input parameters such as the number of clusters, number of nearest neighbors 

and other factors in these algorithms make the clustering more challengeable 

topic. Thus any incorrect choice of these parameters yields bad clustering 

results. Furthermore, these algorithms suffer from unsatisfactory accuracy when 

the dataset contains clusters with different complex shapes, densities, sizes, 

noise and outliers. In this thesis, we propose a new approach for unsupervised 

clustering task. Our approach consists of three phases of operations. In the first 

phase we use the most widely used clustering technique which is Kmeans 

algorithm for its simplicity and speed in practice. We benefit just from one run of 

Kmeans, despites its accuracy, to discover and analyze the given dataset by 

catching preliminary clusters to insure closely grouping sets. The second phase 

takes these initial groups for processing them in a parallel fashion using 

shrinking based on the convex hull of the initial groups. From the second phase 

we obtain a set of sub-clusters of the given dataset. Hence, the third phase 

considers these sub-clusters for merging process based on the Delaunay 

triangulation. This new algorithm is named as Kmeans-Based Convex Hull 

Triangulation clustering algorithm (KBCHT). We present experiments that 

provide the strength of our new algorithm in discovering clusters with different 

non-convex shapes, sizes, densities, noise and outliers even though the bad initial 

conditions used in its first phase. These experiments show the superiority of our 

proposed algorithm when comparing with most competing algorithms. 

 

Keywords: data clustering, data mining, machine learning, homogenous groups, 

non-convex shapes, unsupervised clustering, Kmeans, shrinking, convex hull and 

triangulation. 
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Chapter 1 
 

 

 

INTRODUCTION 
 
 

 

 
 
 

 

 

A lot of data can be gathered from different fields but this data is useless 

without proper analysis to obtain useful information. In this thesis, we focus on 

one of the important techniques in data mining: Clustering. 

  

1.1 Data Clustering 

Data clustering is a method of grouping similar objects together. Thus the 

similar objects are clustered in the same group and dissimilar objects are 

clustered in different ones. An illustration example of clustering is shown in Fig 

1.1. Data clustering is considered as an unsupervised learning technique in 

which objects are grouped in unknown predefined clusters. On the contrary, 

classification is a supervised learning in which objects are assigned to 

predefined classes (clusters). 
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(a) 

 

(b) 
Figure 1.1: Clustering example (a) dataset contains 14 objects. (b) Objects are 

grouped into 5 clusters. (adapted from: http://www.slideshare.net/pierluca.lanzi/ 

machine-learning-and-data-mining-08-clustering-hierarchical  last visit: July, 2011 

1.1.1 Basic Concepts of Clustering 

The problem of data clustering can be formulated as follows: given a dataset D 

that contains n objects x1,x2,…,xn (data points, records, instances, patterns, 

observations, items) and each data point is in a d-dimensional space, i.e. each 
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data point has d dimensions (attributes, features, variables, components). This 

can be expressed in a matrix format as: 

� = ���� ������ ���⋮ ⋮
⋯ ��	⋯ ��	⋱ ⋮��� ��� ⋯ ��	

�                                    (1.1) 

Data clustering is based on the similarity or dissimilarity (distance) 

measures between data points. Hence, these measures make the cluster analysis 

meaningful [28]. The high quality of clustering is to obtain high intra-cluster 

similarity and low inter-cluster similarity as shown in Fig. 1.2. In addition, 

when we use the dissimilarity (distance) concept, the latter sentence becomes: 

the high quality of clustering is to obtain low intra-cluster dissimilarity and 

high inter-cluster dissimilarity. 

 

Figure 1.2: Inter-cluster and Intra-cluster similarities of clusters. 
 

1.2 Importance of Clustering 

Data clustering is one of the main tasks of data mining [1] and pattern 

recognition [2]. Moreover, it can be used in many applications such as: 

1. Data compression [3].  

2. Image analysis [5]. 

3. Bioinformatics [6]. 

4. Academics [9]. 

5. Search engines [79]. 

6. Wireless sensor networks [80]. 
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7. Intrusion detection [81]. 

8. Business planning [82]. 

1.3 Motivations 

The Kmeans algorithm is considered as one of the top ten algorithms in data 

mining [35]. A lot of researches and studies have been proposed due to its 

simplicity and efficiency [55]. These efforts have focused on finding possible 

solutions to one or more of the limitations that have been identified in page 10. 

Kmeans with random initialization conditions need to be rerun many times 

each with different conditions to find more suitable results [21]. Many 

algorithms have been considered to provide better seeds so the Kmeans 

algorithm is likely to converge to the global optimum like Minmax[43], 

Kmeans++ [44] and [45]. Other solutions to the initial prototypes sensitivity 

can be found in [46] where they defined new criterion functions for Kmeans 

and they proposed three algorithms: weighted Kmeans, inverse weighted 

Kmeans [52] and inverse exponential Kmeans [53]. Other improvements of 

Kmeans focus on its efficiency where the complexity of Kmeans involves the 

data set size, number of dimensions, number of clusters and the number of 

iteration to be converged. There are many works to reduce the computational 

load and make it faster such as [4], [47-49]. Asgharbeygi and Maleki [39] 

proposed a new distance metric which is the geodesic distance to ensure 

resistance to outliers. Several works have been introduced to extend the use of 

means for numerical variables, thus Kmeans can deal with categorical variables 

such as [50], [51]. 

JJ Sheu et. al. [61] proposed a new algorithm and they named it Intelligent 

Kmeans (IKM) for deciding the proper number of clusters, choosing a better 

initial prototypes and reducing the effect of outliers on the clustering result. 

IKM divided the range of data points for each d dimensions into M regions 

where M is a constant input number. One drawbacks of this method, is the 

choice of grid size. If it is small, it will produce a large number of clusters and 

vice versa. 
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Many researchers have been involved in developing solutions to the Kmeans 

and other clustering algorithms such as using neighborhood model [23], ant 

colony [24], the principle of gravity [26], genetic algorithms [25], and 

clustering method with constraints [27]. 

The problem in clustering is that we do not have prior information 

knowledge about the given dataset. Moreover, the choice of input parameters 

such as the number of clusters, number of nearest neighbors and other factors 

in these algorithms make the clustering more challengeable topic. Thus any 

incorrect choice of these parameters yields bad clustering results. Furthermore, 

these algorithms suffer from unsatisfactory accuracy when the dataset contains 

clusters with different complex shapes, densities, sizes, noise and outliers.  

In this thesis we want to design a novel clustering algorithm that is able to 

discover clusters with arbitrary complex shapes with presence of noise and 

outliers without requiring a previous knowledge of the given domain. In our 

approach we use the concept of convex hull [62] in which it is widely used in 

image processing to represent the shapes. Furthermore, it has been recently 

used in classification methods such as [64], [65]. Moreover, in [66] they 

provided a method of representing on-line data streaming using a cost function 

based on convex hull. In which they are concerned in representing the shape of 

data stream as a collection of convex hulls. However, this method cannot 

recover clusters correctly if the values of its input parameters are not set 

correctly. 

1.4 Thesis outlines 

In Chapter 2, we introduce a general overview of data clustering 

categorizations and algorithms. The ways of how we can construct a graph to 

be used in the clustering algorithms have been mentioned too. Moreover, we 

also explain and summarize some of the related works. 

Our proposed algorithm is presented in details in Chapter 3. In which the 

three phases of the proposed algorithm are explained. A simple toy example is 

considered to be solved by our proposed algorithm. The simulation and results 
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analysis based on our generated complex shaped datasets have been 

accomplished in the last section of Chapter 3. Chapter 4 uses a topology 

preserving mapping as a preprocessing to our approach and we have used 10 

real datasets from UCI machine repository to show the effectiveness of our 

proposed algorithm. Chapter 5 gives the conclusions and future research. We 

also provide two appendices that illustrate how the data preparation is done and 

the used distance metrics in the clustering algorithms. 
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Chapter 2 

 

 

RELATED LITERATURE REVIEWS 
 

 

 
 

 

 

 

2.1 Overview 

The clustering problems can be categorized into two main types: fuzzy 

clustering and hard clustering. In fuzzy clustering, data points can belong to 

more than one cluster with probabilities between 0 and 1 [10], [11] which 

indicate the strength of the relationships between the data points and a 

particular cluster. One of the most popular fuzzy clustering algorithms is fuzzy 

c-mean algorithm [12], [13], [14]. In hard clustering, data points are divided 

into distinct clusters, where each data point can belong to one and only one 

cluster.  

The hard clustering is divided into hierarchical and partitional algorithms. 

Hierarchical algorithms create nested relationships of clusters which can be 

represented as a tree structure called dendrogram [28]. Hierarchical algorithms 

can be divided into agglomerative and divisive hierarchical algorithms. The 

agglomerative hierarchical clustering starts with each data point in a single 

cluster. Then it repeats merging the similar pairs of clusters until all of the data 

points are in one cluster, such as complete linkage clustering [29] and single 
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linkage clustering [30]. CURE [15], ROCK [16], BIRCH [17] and Chameleon 

[18] are examples of this hierarchical algorithm. The divisive hierarchical 

algorithm reverses the operations of agglomerative clustering, it starts with all 

data points in one cluster and it repeats splitting large clusters into smaller ones 

until each data point belongs to a single cluster such as DIANA clustering 

algorithm [31].  

In the contrary, Partitional clustering algorithm divides the dataset into a set 

of disjoint clusters such as Kmeans [32], [42] PAM [31] and CLARA [31]. 

Moreover, the partitional algorithms have been considered more appropriate for 

applications with large dataset, in which the construction of the dendrogram is 

computationally expensive [1], [37]. One of the problems in applying 

partitional methods is the choice of the number of clusters within the given 

datasets where the determination of the number of clusters is one of the most 

problematic issues in data clustering [7]. The partitional algorithms often use a 

certain objective function and produce the desired clusters by optimizing this 

objective function [36]. 

The clustering algorithms that are based on estimating the densities of data 

points are known as density-based methods. One of the basic density based 

clustering algorithm is DBSCAN [40]. It defines the density by counting the 

number of data points in a region specified by a predefined radius known as 

epsilon ɛ around the data point. If a data point has a number greater than or 

equal to predefined minimum points known as MinPts, then this point is treated 

as a core point. Non-core data points that do not have a core data point within 

the predefined radius are treated as noise. Then the clusters are formed around 

the core data points and are defined as a set of density-connected data points 

that is maximal with respect to density reachability. DBSCAN may behave 

poorly due its weak definition of data points’ densities and its globally 

predefined parameters of ε and MinPts. There are many works that try to 

improve the well known DBSCAN such as [41], [56-60]. 
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2.2 Similarity Graphs 

Another type of clustering algorithms is based on the construction of similarity 

graphs in which a given set of data points is transformed into vertices and 

edges. The constructed graph can be used to obtain a single highly connected 

graph that is then partitioned by edge cutting to obtain sub graphs [72], [74], 

[68]. Basically, the kinds of graphs are ɛ-neighborhood, k-nearest neighbor and 

fully connected graph [2], [70], [54].  

The ɛ-neighborhood graph connects all data points whose pairwise 

distances are smaller than a predefined threshold ɛ.  

In the k-nearest neighbor graph the data point vi (vertex) is connected with 

another data point in the dataset if it is in the k-nearest neighbors of vi where k 

is a predefined parameter. This method lets the k-nearest neighbor produces a 

directed graph. The undirected graph can be obtained from the k-nearest 

neighbor by simply ignoring the directions of edges or by having a mutual k-

nearest neighbor graph in which two vertices are connected by an edge if and 

only if these two vertices are among the k-nearest neighbors of each other.  

The fully connected graph connects all data points that have a positive 

similarity measurement with each other. The similarity measure can be 

produced by using the Gaussian similarity function Sij=exp(-d���/2σ
2
) where dij 

is the Euclidean distance between two data points xi and xj and the parameter σ 

is also a user defined one that controls the width of neighborhoods. 

2.3 Kmeans Algorithm 

One of the most well-known unsupervised learning algorithms for clustering 

datasets is Kmeans algorithm [31], [37]. The Kmeans clustering is the most 

widely used due to its simplicity and efficiency in various fields [33], [38]. It is 

also considered as the top ten algorithms in data mining [35]. The Kmeans 

algorithm works as follows: 

1. Select a set of initial k prototypes or means throughout a dataset, where 

k is a user-defined parameter that represents the number of clusters in 

the dataset. 
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2. Assign each data point in a dataset to its nearest prototype m.  

3. Update each prototype according to the average of data points assigned 

to it. 

4. Repeat step 2 and 3 until convergence.  

The Kmeans algorithm depends on minimizing the sum of squared error 

function which is very simple and can be easily implemented. 

� = 1� � �‖� − ��‖� 
�∈��

�
���  (2.1) 

Where dataset D contains n data points x1,x2,…,xn such that each data point is d 

dimensional vector in R
d
, and mi is the prototype of cluster Ci, and k is the 

given number of clusters. 

However, it has several drawbacks: the number of clusters k in a given 

dataset should be known in advance, the result strongly depends on the initial 

prototypes, the sensitivity to noise and outliers, the problem of dead prototypes 

or empty clusters and the converge to local optima [34]. The Kmeans works for 

globular shaped, similar size and density clusters. 

2.4 CURE and Chameleon Algorithms 

CURE [15] uses a constant number of well scattered representative data points 

from all data points in the dataset to represent a cluster instead of selecting one 

single centroid to represent a cluster in Kmeans. These are shrunk towards the 

centroid of the cluster according to a user predefined shrinking factor. Then a 

consecutive merging of the closest pair of the cluster’s representative points are 

occurred until the predefined number of clusters is obtained. The selection of 

the shrinking factor and the merging process make CURE ineffective with 

complex datasets and they can cause false outliers [22]. 

Chameleon [18] uses a graph construction based on k-nearest neighbors, and 

then it splits the graph into a set of small clusters using hMetis algorithm [19]. 

After that it merges these small clusters based on their similarity measure. It 

has been used to find non-convex shaped clusters, however, it cannot handle 
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noise and outliers and needs to set parameters correctly in order to obtain good 

results [22], [20]. 

2.5 Affinity Propagation Algorithm 

Another type of clustering algorithms is called Affinity Propagation [67] that 

passes messages between data points to identify a set of exemplars (cluster 

centers) and their corresponding clusters. In contrary of selecting an initial set 

of cluster centers randomly and iteratively refines them such that the sum of 

squared error is minimized as in Kmeans; the Affinity Propagation provides a 

different approach that simultaneously considers all data points as candidate 

exemplars. Then two types of messages are exchanged between data points. 

The Responsibility messages are sent from data points to candidate exemplars 

and indicate how strongly each data point is biased to the candidate exemplar 

over other candidate exemplars. The Availability messages are sent from 

candidate exemplars to data points and reflect evidence that each candidate 

exemplar is available to be a cluster center of the data points. The Affinity 

Propagation uses the median of similarities between data points as preferences 

rather than the predetermined number of clusters. 

2.6 Spectral Clustering Algorithm 

Recently, the spectral clustering [70] has become one of the most popular 

clustering algorithms which outperform the traditional algorithms such as 

Kmeans. Furthermore, they are designed to handle non-convex shaped clusters. 

However, spectral clustering suffers from heavily computations. The similarity 

measure and graph cutting are also used in spectral clustering algorithms. The 

core of the spectral clustering algorithms is to use the properties of 

eigenvectors of Laplacian matrix for performing graph partitioning [69-76].  

The Laplacian matrix is constructed by building an affinity graph matrix 

with a similarity measure. The common similarity measure is to use the 

Gaussian function Sij as stated previously for its simplicity. Hence, the 

Laplacian matrix L is calculated as L=D-S where D is the diagonal matrix 
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whose elements are the sum of all row elements of S. Then, the spectral 

clustering computes a column matrix of the first k eigenvectors of L where k is 

a predefined number of clusters. Thus it finds the clusters of mapped data 

points that corresponding to the column matrix of eigenvectors by performing 

Kmeans algorithm. 

2.6.1 Spectral Clustering using Nystrom Method 

W.-Y. Chen et. al. [76] proposed sparsification and Nystrom approaches to 

address the computational difficulties and to improve the results. We compare 

our algorithm with spectral clustering using Nystrom method because it needs 

less computation and does not need the prespecified number of nearest 

neighbors as in sparsification method. Nystrom method is a technique for 

finding an approximate eigendecomposition. The spectral clustering using 

Nystrom method uses randomly sample data points from the dataset to 

approximate the similarity matrix of all data points in the dataset. Then it finds 

the first k eigenvectors of the normalized Laplacian matrix of the Nystrom 

method and performs Kmeans to cluster dataset. 

2.7 Topology Preserving Mapping 

A topographic mapping is a transformation of high dimensional data. 

Furthermore, it preserves some structure in the data such as the points which 

are mapped close to each other share some common properties while in 

contrast the points which are mapped far from each other do not share a 

common feature or property. 

The Self-organizing map (SOM) [84] and the Generative topographic 

mapping (GTM) [85] have been considered as very popular topology 

preserving mapping techniques for data visualization and dimensionality 

reduction. The GTM can be considered as a statistical alternative to the SOM 

overcoming many of its limitations such as the absence of a cost function and 

the lack of proof convergence [86].  
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2.7.1 Self-organizing Map (SOM) 

The Self-organizing Map (SOM) [84] is a type of artificial neural network that 

is trained using unsupervised learning. SOM reduces dimensions of the given 

datasets by producing a map of usually one or two dimensions. Furthermore, 

SOM uses a neighborhood function to preserve the topological properties of the 

input space. 

The SOM consists of components called nodes or neurons in which they are 

usually arranged in a hexagonal or rectangular grid. It first initializes the 

weights associated with each neuron by assigning them small random values. 

Then the SOM proceeds to three essential processes: competition, cooperation, 

and adaptation [28]. 

2.7.2 Generative Topographic Mapping (GTM) 

The GTM is a statistical model for modeling the probability density of data 

points and finding non-linear mapping of high dimensional space onto low 

dimensional space.  

 

Figure 2.1: Non-linear mapping by GTM, adapted from [87]. 

 

As shown in Fig. 2.1, the basis of the GTM is to generate a grid of K latent 

points z1,z2,…,zK in latent space. These latent points are mapped non-linearly 

into the data space, which contains N data points xn (n=1,2,…,N), using a set of 

M fixed basis Gaussian functions, such that, 
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 � = Φ�"#$                                                 (2.2) 

Where yk denotes the mapped points in data space. The element Φ consists of 

M fixed basis functions. W is M x D matrix containing weight parameters, and 

D is the dimensionality of data space. A
Tr

 is a transpose of a matrix A. 

 

The probability density between the mapped points yk and data points xn is 

estimated by using a Gaussian noise distribution centered on yk with the noise 

inverse variance β. This probability density p(xn|yk,W,β) is defined as : 

)(��| � , $, ,) = - .�/01 �2 exp (− .� ‖�� −  �‖�)             (2.3) 

 

The training step of GTM is done by optimizing its parameters using the 

Expectation-Maximization (EM) algorithm [2], [28] which maximizes the 

following log-likelihood: 

ℒ($, ,) = argmax<,. � ln ?1@ � )(��| � , $, ,)A
���

BC
���                 (2.4) 

 

After convergence, we can visualize the data by projecting each data point 

xi onto the latent space using one of the two ways: 

• The Mode: the mode of posterior distribution:  � EF	G = argmaxHI )( �|��)                                 (2.5) 

• The Mean: the mean of posterior distribution: 

 � EGK� = �  �
A

��� )( �|��)                                  (2.6) 

 

Where )( �|�) is the corresponding posterior distribution in the latent 

space for any given data point x in the data space and is defined as: 

)( �|�) =  )(�| � , $, ,))( �)∑ )(�| �N, $, ,))( �N)A�O��                            (2.7) 
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Chapter 3 

 

 

KBCHT: KMEANS-BASED CONVEX HULL 

TRIANGULATION CLUSTERING 

ALGORITHM 
 
 

 

 

The problem of clustering datasets is that we have no prior knowledge 

information about them. Thus the majority of existing clustering algorithms try 

to solve it by introducing external input parameters which make these works 

sensitive to their inputs. In this chapter we introduce Kmeans-Based Convex 

Hull Triangulation clustering algorithm (KBCHT) a new clustering algorithm 

that studies the given dataset to find the clusters. KBCHT algorithm is able to 

detect clusters without pre-determination of clusters number in datasets which 

contain complex non-convex shapes, different sizes, densities, noise and 

outliers. Algorithm 3.1 provides a pseudo-code that describes the overall 

procedures of KBCHT algorithm. 

3.1 Proposed KBCHT Algorithm 

KBCHT has three phases of operations. The first phase obtains initial groups 

from running Kmeans algorithm just once, the second phase analyzes these 

initial groups to get sub-clusters and the last one merges the sub-clusters to find 

the final clusters in the dataset. As shown in Algorithm 3.1, KBCHT performs 

Kmeans algorithm on the dataset x given the number of clusters k. The use of k 

is just to run Kmeans as we will notice by further study of the effect of k in 
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Section 3.3.2. Line 2 means that the first run of Kmeans algorithm despite its 

bad initialization conditions has an initial set of clusters iCi where i is from 1 to 

N the number of obtained clusters from Kmeans. The set iC with index i 

contains data points from dataset x which belong to the initial cluster i. Lines 3 

to 7 describe the process of how we analyze these initial clusters to obtain a set 

of sub-clusters. In line 4, we construct a set of vertices which represents each 

initial clusters iC. This set of vertices is obtained from the convex hull of each 

initial clusters iC. The set iV handles these vertices which contains two indexes 

i and j as shown in line 4. In which the index i indicates that these vertices 

belong to the initial cluster i and the index j represents the vertex number of 

convex hull of initial cluster i in a counterclockwise order. After obtaining the 

vertices from the convex hull, these vertices need to be shrunk by adding new 

vertices from the belonged initial clusters set iC. Thus we begin with vertices 

drawn from a convex hull and finish with vertices of a polygon. The shrunk 

vertices are handled in the set sV as shown in line 5 of Algorithm 3.1. Line 6 

takes the shrunk vertices sV and processes them to obtain a set of sub-clusters 

sC, the number of these sub-clusters S and the average distance between data 

points of each of the sub-clusters in sC (sCaD) using the delaunay triangulation 

[63] as will be explained later . The sub-clusters are formed by searching for 

closed loops vertices in the sV set. The set sC has indexed from 1 to S in which 

sCi contains data points of dataset x that belong to sub-cluster i. Some of these 

sub-clusters could be merged together to form the final result of clusters C as 

shown in line 8.  

Algorithm 3.1:   KBCHT 

1 QRST� T�TUTVWTXR Y, �, TZ = [ \, ]Z = [ \, Z = [ \, T^ = [ \, ]^ = [ \, ]ZV� = [ \, _ = 0 , a = 0 

2  TZ, _ ←  @�RV�](�, Y) 

3  cde T = 1 Ud _ 

4   T^(T, f) ← Zd�]UeghU hd�iR�ℎgWW cde hWg]URe TZ� 
5   ]^(T, Y) ← ]ℎeT�Y^ReUR�(TZ� , T^(T, : )) 

6   ]Z, a, ]ZV� ← cT�lagmZWg]URe](TZ� , ]^(T, : )) 

7  R�l_cde 

8  Z ← �ReST�S(]Z, a, ]ZV�) 

9  oRUge� Z 

10 R�l 
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3.1.1 The First Phase: The use of standard Kmeans 

KBCHT algorithm chooses to use the well known Kmeans algorithm as it is 

first step because of its simplicity and widely use as one of the top ten data 

mining algorithms [35].  

The aim of our algorithm is to find clusters of arbitrary shapes and to detect 

odd patterns that exist in the datasets which Kmeans is far away from detecting 

them; Kmeans depends on assigning data points to their nearest mean thus the 

final result of it comes out as spherical shapes. Thus we can benefit from its 

first run with randomly thrown prototypes throughout the given dataset to catch 

preliminary initial clusters that insures closely grouping sets. However, 

Kmeans algorithm needs to be injected with k the number of clusters in the 

dataset. Further investigation on the effect of k has been conducted in Section 

3.3.2. The k or less than k, in case of dead prototypes, resultant partitions from 

Kmeans could be processed and analyzed in a parallel fashion which speeds up 

the processing time.  

In this phase we are concerned with catching initial relatively related groups 

and Kmeans algorithm gives relatively robust and good enough answers over a 

wide variety of datasets as mentioned in [46]. Hence, we have decided to work 

on the standard Kmeans algorithm. 

Generally speaking, we can use any other method in which they offer 

grouping such as any of the partitional clustering algorithms that are mentioned 

in Chapter 1. Moreover, we can benefit from the researches that are focused on 

the construction of similarity graphs of the given datasets as explained in 

Chapter 2. 

  Besides that, there are many developed researches related to overcome the 

limitations of the standard Kmeans algorithms. Hence, the choice of one of 

these developed researches to be as our first phase depends on what we want 

and what we have. i.e, we want more accurate initial result despite the time it 

could take or vice versa. 

Some of these researches have aimed at identifying the initial centroids 

locations. In [91] they avoided the initial random assignment of centroids using 
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sub-merger strategy and [46] focused on the sensitivity to initial centroids 

condition. Another research has focused on the number k of clusters such as in 

[92] where they proposed a measure to select the number of clusters. Others 

have tried to accelerate the Kmeans algorithm by avoiding many calculations 

of distance based on partial distance strategy like in [4]. 

3.1.2 The Second Phase: The Shrinking 

After catching the initial groups, we want the greatest benefit from them. How 

we can analyze and represent them? We can go back to the topics of grid 

clustering in the book [28] and the research as in [62] in which they divided the 

group of data points into equal grids then trying to eliminate the grids that do 

not contain sufficient number of points. But by using this, we have stuck under 

the mercy of the user defined parameters. Hence, we have decided to use 

widely used concept of representing shapes as in image processing which is the 

convex hull mechanism. 

As shown in lines 3 to 7 of Algorithm 3.1, this phase of KBCHT algorithm 

operates on the set of initial clusters that are obtained from the first phase. Each 

group of initial clusters is represented by its surrounding vertices on convex 

hull and the data points inside this convex hull. Then these vertices of each 

group are shrunk separately until we find the final sub-clusters. Procedure 3.1 

in the next page describes the shrinking process in details.  

Suppose we have one of the initial clusters obtained from the first phase of 

KBCHT algorithm as shown in Fig. 3.1 (page 18). The blue ‘*’s in Fig. 3.1 

represent the data points of the given dataset which can belong to one or 

different final clusters of the dataset. The solid lines that are surrounding the 

data points in Fig. 3.1 represent the convex hull of this portion of dataset. The 

vertices from V1, V2 to V12 are the boundary data points drawn from the convex 

hull in which V1 equals to the last vertex V12 and these vertices are in a 

counterclockwise order. As in Fig.3.1 the blue ‘*’s are x data points in 

Procedure 3.1 and the set Vs is the vertices of convex hull. In case of Fig. 3.1, 

Vs is from V1 to V12.  
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Line 5 in Procedure 3.1 computes the maximum length of edges between 

each two consecutive vertices and stores it in MAX variable. KBCHT algorithm 

does not use external parameter to guide the shrinking processing. It self 

studies the given data points to decide when and how to make the shrink. This 

maximum edge has the highest priority to be shrunk. 

We can make the shrinking based on different criteria such as defining an 

external parameter to be a threshold, instead of calculating our average, like in 

many clustering algorithms that use threshold parameters. Thus by starting 

shrinking the maximum edge length until the maximum one becomes less than  

 

Procedure 3.1: Shrink Vertices     

1 p�)gU: 
2  ^]: ^ReUThR] dc hd�iR� ℎgWW 

3  �: lVUV )dT�U] T�]TlR hd�iR� ℎgWW dc ^] 

4 QRST�   
5  qrs ←  cT�l �V�T�g� WR�SUℎ dc RlSR] mRUtRR� ^] 

6  r^u ←  cT�l ViReVSR lT]UV�hR V�d�S dmfRhU] � T�hWd]Rl m  ^] 

7  tℎTWR qrs < r^u 

8   �^] ←  R�hWglR ^] ced� � V�l eRhd�]UeghU hd�iR� ℎgWW 

9   qrs ←  cT�l �V�T�g� WR�SUℎ dc RlSR] mRUtRR� �^] 

10   r^u ←  cT�l ViReVSR lT]UV�hR V�d�S dmfRhU] � T�hWd]Rl m  �^] 

11   ^] ← �^] 

12  R�l_tℎTWR 

13  ^ ←  oRdelRe ^] ]UVeUT�S ced� iReUR� mRWd�SR] Ud UℎR Wd�SR]U RlSR            (eR]ReiR hdg�URehWdhYtT]R delRe) 

14  tℎTWR qrs ≥ r^u xo Zd�iReSRl  

15   y ←  cT�l hWd]R]U )dT�U ced� � Ud UℎR WT�R mRUtRR� �̂ V�l �̂           V�l TU] )edfRhUTd� cVWW] mRUtRR� �̂ V�l �̂          V�l eR]TlR] d� UℎR WRcU dc �̂ V�l �̂             V�l UℎR )Re)R�lThgWVe WT�R ced� y Ud UℎR WT�R mRUtRR� �̂ V�l �̂ ldR]           ℎViR  �d T�URe]RhUTd� tTUℎ dUℎRe RlSR] mRUtRR� iReUThR]   
16   Tc ]ghℎ V )dT�U y R�T]U] 

17    Vll y Ud ^ mRUtRR� �̂ V�l �̂ 

18   RW]R 

19    cWVS �̂ V�l �̂V]  )edhR]]Rl iReUThR] 

20   R�l_Tc 

21   qrs ← cT�l WR�SUℎ dc Wd�SR]U RlSR V�l TU] iReUThR] VeR �dU )edhR]]Rl 

22   oRdelRe ^ ]UVeUT�S ced� iReUR� mRWd�SR] Ud UℎR Wd�SR]U RlSR V�l TU]  iReUThR] VeR �dU )edhR]]Rl (eR]ReiR hdg�URehWdhYtT]R delRe) 

23  R�l_tℎTWR 

24  oRUge� ^ 

25 R�l 
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the defined threshold. But as stated before, KBCHT algorithm does not like to 

be with the clemency of external factors. Hence, we decide to compute the 

average distance among data points that enclosed by the set of Vs. The vertices 

Vs are excluded from computing this average to eliminate the effect of being 

outliers. To compute the average distance among data points, we do not want to 

consider the distances between each data point and every other data point in the 

set; This will be computational expensive and does not reflect the actual data 

structure of the given set of data points. Thus we construct the Delaunay 

triangulation of the data points. Then the average distance AVG is the average 

length of the triangles edges.  

Now we have two variables MAX and AVG. However, for starting the 

shrinking process the maximum edge length of convex hull MAX should be 

greater than the average distance AVG.  If it is not, this means that the vertices 

of the convex hull are denser than the enclosed set of data points as shown in 

Fig. 3.2. In this case, we identify a new set of vertices by reconstructing the 

convex hull of the data points again without considering the previously 

obtained vertices. These are shown in lines 7 to 12 of Procedure 3.1.  

 
Figure 3.1: Blue ‘*’s represent a partition from dataset enclosed by its convex hull and 

V’s represent Vertices on convex hull and lines between vertices represent edges. 
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After satisfying the above condition for starting the process of shrinking, we 

reorder the vertices to begin from the vertex that belongs to the longest edge 

length (line 13 of Procedure 3.1). But we have to reserve the order of vertices 

in a counterclockwise order. Back to Fig. 3.1, the longest edge length is the 

edge between two vertices V9 and V10. So we reorder the vertices such that V1 

becomes V9 and V2 becomes V10 and so on. 

 How to do the shrinking: At this stage, we have a set of vertices begins 

from the vertex with the longest edge. We want to find another vertex from the 

data points to be engaged between the first two vertices. To find this new 

vertex, we have to find the closest data point to the line between the first two 

 
(a) 

 
(b) (C) 

Figure 3.2: (a) Example of a set of data points, red ‘*’s, that vertices of the convex hull, black 

solid lines, are far away from a sparse cluster. (b) Shrinking result after eliminating the 

vertices of convex hull. (c) The final result red ’*’s are in one cluster and black ‘+’s are in a 

separated cluster. 
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vertices of the set V and its projection lies on the line between these two 

vertices. Consider Fig. 3.3 as an illustrated example for finding the closest 

point to the line. In Fig. 3.3 we want to find the closest point to the line AB. To 

do this we have to find the projection points (D1 and E1) on the line AB from 

the tested points. Let A=(Ax,Ay), B=(Bx,By) and D=(Dx,Dy). Our goal is to find 

the point D1=(D1x,D1y). Hence D1 lies on the line AB, thus it satisfies its line 

equation and it can be found from: D1=A+u(B-A). To find u, the dot product of 

the perpendicular line from D to line AB and line AB is 0. Thus u can be found 

from the following equation [89]: 

g = (�1� − r�)(Q� − r�) + {�1H − rH|{QH − rH|-(Q� − r�)� + {QH − rH|�0                            (3.1)  
 

To guarantee that D1 lies between A and B; the value of u should be between 

[0, 1]. So, the points C and F do not be considered. Then the distance from the 

point to the line is the distance from that point to its projection point on the 

line. 

We reserve the order of the vertices to be counterclockwise. Thus the picked 

point that has to be a new vertex should also reside on the left side of the two 

vertices in which the new vertex has to be engaged between them. To ensure 

this, Back to Fig. 3.3 suppose we have two vertices A and B and we want to 

examine that the data point D resides on the left side of the direction from A to 

B. we compute the value of the following equation [90]: 

 
Figure 3.3: Solid line between points A and B. Dash lines are the projection of points to 

the line AB. 
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                                               iVWgR = }r� Q� ��rH QH �H1 1 1 }                                               (3.2) 

Where |. | is the matrix determinant. If the sign of the value of equation (3.2) is 

positive then the examined point is on the left side. As well as it is on the right 

side if the sign is negative and on the straight line if it has a zero value. In fact, 

the equation (3.2) reflects the area of the triangle of ABD.  

However, we have started the shrinking with the vertices that lay on the 

convex hull. Our approach in shrinking does not conserve the convexity of the 

shrunk vertices shape. Thus we have to provide an additional condition for 

shrinking which is shown in line 15 of Procedure 3.1. This condition says that 

the perpendicular line from the candidate vertex to the line between the two 

vertices in which their edge has to be shrunk should not intersect any of the 

lines that are between two consecutive vertices. This condition has exceptions. 

To be more obvious and as stated previously, the candidate vertex should be 

between V1 and V2 vertices thus if the candidate vertex is already an existing 

vertex, we violate the previous condition if this candidate vertex is V3 or Vlast-1 

(vertex that resides before the last one directly). Also, it should be violated if 

there is only one intersection and this intersection point is equal to the vertex V1 

or V2. While the process of shrinking is going on, some vertices have to be 

released from the vertices set if a specific vertex has the same previous and 

next vertex. Hence, this vertex has to be released if its distance to next vertex is 

greater than the AVG value. The released vertices should be processed in the 

last phase of KBCHT algorithm. The sharp eyed readers may notice that the 

above condition of releasing vertices may be violated even though they should 

be released. This situation happens when we want to release a vertex that 

resides far away from a group of dense data points but its distance to next 

vertex is less than the overall average distance AVG. In this case, we add one 

more examine condition in which we compute the length of the two adjacent 

edges of this vertex. If both of them are greater than the overall average 

distance AVG and they have no close candidate vertices to be added in the set 

of V. Thus we guarantee to release this vertex from the set V.    
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Line 17 of procedure 3.1 says: “All of the above mentioned conditions have 

been satisfied”. Thus we add the candidate vertex to be one of the vertices in 

the set V between vertex V1 and V2. If no such a candidate vertex in which it 

violates the above conditions, the two vertices V1 and V2 have been flagged to 

be processed. A new value of variable MAX should be recalculated as in line 21 

of Procedure 3.1. But at this time the vertices that have a maximum edge length 

should not be flagged as processed. If so, find the next longest edge length until 

their vertices are not flagged. Then the set V is reordered again starting from 

the vertex that belongs to the longest edge length and their vertices are not 

flagged as processed. We repeat this process of shrinking again and again until 

the MAX value becomes less than the average distance AVG or all vertices in 

the set V have been flagged as processed. 

What to do with the shrunk vertices: the last operation of the second 

phase of KBCHT algorithm is to refine the shrunk vertices and to extract useful 

information from the set of these vertices by finding the groups of sub-clusters 

entire the given dataset. Procedure 3.2 says how to find sub-clusters. After 

shrinking the vertices that obtained from the first phase of KBCHT algorithm 

in which they reside on the boundary of the convex hull of each of the resultant 

initial groups from the first phase. At this stage, the shrunk vertices are on the 

boundary of initial group of data points where this boundary forms a general 

polygon shape.  

KBCHT algorithm calls the Procedure 3.2 in its line 6 as shown in 

Algorithm 3.1. Procedure 3.2 takes two inputs: V which is the resultant shrunk 

vertices and x which is the set of data points that enclosed by V. This x is a part 

of the overall given dataset. We want to distinguish these vertices in the set V 

thus each group of connected vertices belongs to a separate sub-cluster. We 

define the set L that has a number of entries equal to the number of the given 

vertices in V. Initially, all the vertices are assigned a label value of 0 such that 

Li=0 ∀ i∈{1,…,len} where len is the number of shrunk vertices. For example if 

L5 has a label value equals to 1, then this means that the V5 of the set V is 
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assigned to the sub-cluster of label 1. Thus L handles the labels of sub-clusters 

that each of vertices in V belongs to.  

In line 9 of Procedure 3.2 we define a variable count which it is initially set 

to be 1 and is incremented automatically by one when the algorithm detects a 

new sub-cluster. So, count represents the labels of sub-clusters that the vertices 

belong to.  Procedure 3.2 enters a loop that begins from line 10 and ends up at 

line 22. These lines are the core of this Procedure in which we define two 

pointers i and j such that we fix i to point to a specific vertex in the set V and 

then the pointer j investigates each of the following vertices after that vertex 

which is pointed by i. When the pointer j reaches the last vertex in the set V, we 

move the pointer i one step forward to point to the next vertex and the pointer j 

Procedure 3.2: Find sub clusters     

1 p�)gU: 
2  ^: aℎeg�Y ^ReUThR] dc mdelRe )dW Sd�  

3  �: lVUV )dT�U] R�hWd]Rl m  ^ 

4 QRST�   
5  WR� ←  �g�mRe dc iReUThR] T� ^ 

6  cde T = 1 Ud WR�  

7   ~� ←  0 

8  R�l_cde 

9  hdg�U ←  1  
10  cde T = 1 Ud WR� − 1 

11   Tc ~� == 0 

12    cde f = T + 1 Ud WR� 

13     lTcc ← lT]UV�hR mRUtRR� �̂ V�l �̂  
14     Tc lTcc == 0 

15      cde Y = T Ud f 

16       ~� ←  hdg�U 

17      R�l_cde 

18      hdg�U ←  hdg�U + 1 

19     R�l_Tc 

20    R�l_cde 

21   R�l_Tc 

22  R�l_cde 

23  cde T = 1 Ud hdg�U − 1  

24   ]Z� ← cT�l dmfRhU] dc � T�]TlR ^ tTUℎ WVmRW ~� 
25  R�l_cde 

26  cde T = 1 Ud hdg�U − 1 

27   ]ZV�� ← hVWhgWVUR UℎR ViReVSR lT]UV�hR tTUℎT� UℎR ]gm hWg]URe ]Z�  
28  R�l_cde 

29  oRUge� ]Z, hdg�U − 1 V�l ]ZV�� 
30 R�l 
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restarts and repeats its mission. This task will be repeated until i reaches the 

len-1 vertex which is one position before the last vertex. Line 11 tests if the 

corresponded vertex has never assigned to sub-cluster yet. If so, the procedure 

enters into the loop of the pointer j. In line 13 of Procedure 3.2 we check if the 

vertex pointed by i (Vi) and the vertex pointed by j (Vj) are the same. If they are 

identical vertices, then we obtained a closed connection of vertices which also 

means that we catch one of the sub-clusters in the dataset. Line 16 gives the 

sub-cluster’s label to the set L starting from its index of i through j. After that 

we increment the label identified by count by 1. This process will be repeated 

until we catch all of the sub-clusters in the given dataset. Before line 23 of 

Procedure 3.2, we have groups of vertices each belongs to different sub-

clusters; these groups represent the boundary of the data points of each sub-

cluster. Thus the lines from 23 to 25 find the data points themselves in which 

they are enclosed by each of the obtained closed connection of vertices. Hence, 

the set sC in Procedure 3.2 handles the data points of each sub-cluster in the 

dataset and it has an index starts from 1 to the number of obtained sub-clusters 

where each index handles the tightly data points that belong to a specific sub-

cluster. Finally, for each of the obtained sub-clusters we compute the average 

distance between data points within each of them as explained in Section 3.1.2 

and store these average distances in the group of sCaD as shown in lines 26 to 

28. 

3.1.3 The Third Phase: Merging sub-clusters  

Procedure 3.3 shows the steps of the last phase of our KBCHT algorithm which 

is merging the obtained sub-clusters for finding the final set of clusters in the 

studied dataset. The set sC is defined to be a group of sub-clusters of the 

dataset. In addition, S is the number of these sub-clusters. Hence, 

sC={sC1,sC2,…,sCS} in which each of the sub-cluster sCi contains the data 

points that belong to this sub-cluster. The sCaD={sCaD1,sCaD2,…,sCaDS}  

group handles the average distance within each of the sub-clusters thus sCaD1  
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indicates the average distance within sub-cluster sC1. We also have a group of 

clusters C={C1,C2,…} which is the output of this phase that contains a number 

of the resultant clusters of the given dataset in which it is self identified. 

Moreover, C is also the final result of KBCHT after considering released 

Procedure 3.3:   Merging  sub-clusters 

1 p�)gU: 
2  ]Z: Sedg) dc ]gm hWg]URe]  

3  a: _g�mRe dc ]gm hWg]URe] 

4  ]ZV�: Sedg) dc hVWhgWVURl ViReVSR lT]UV�hR] tTUℎT� RVhℎ dc UℎR ]gm hWg]URe] 

5 QRST�  
6  Z� ← ]Z� 

7  oR�diR R�UeTR] dc WVmRW 1 ced� ]Z Sedg) 

8  V�� ← ]ZV�� 

9  T ← 1 

10  f ← 2 

11  tℎTWR ]Z Sedg) T] �dU R�)U  

12   tℎTWR f ≤ a  

13    Tc ]Z ldR] �dU hd�UVT� WVmWR f 

14     f ← f + 1 

15     hd�UT�gR 

16    R�l_Tc 

17    lm2h ← hd�)gUR UℎR lT]UV�hR mRUtRR� Utd ]gm hWg]URe] Z� V�l ]Z� 

18     Tc lm2h < V�� 
19      Vll ]Z�Ud Z� 
20      oR�diR R�UeTR] dc WVmRW f ced� ]Z Sedg) 

21      Tc ]Z T] R�)U  

22       meRVY 

23      R�l_Tc 

24      V�� ← eRhd�)gUR ViReVSR lT]UV�hR V�d�S dmfRhU] T� ]gm hWg]URe Z� 
25      f ← �T�T�g� iVWgR dc WVmRW] T� ]Z 

26     RW]R 

27      f ← f + 1 

28     R�l_Tc 

29   R�l_tℎTWR 

30   Tc ]Z T] R�)U  

31    meRVY 

32   R�l_Tc 

33   T ← T + 1 

34   cW ← cT�l cTe]U WVmRW T� ]Z 

35   r))R�l ]Z��  Ud Z� 
36   oR�diR R�UeTR] dc WVmRW cW ced� ]Z Sedg) 

37   V�� ← ]ZV��� 
38   f ← cW + 1 

39  R�l_tℎTWR 

40  oRUge� Z 

41 R�l 
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vertices as mentioned previously. These released vertices are categorized into 

two groups. One of them identifies them as noise and outliers, and the other 

one assigns them back to their corresponding clusters. 

 First we add the first item of the group sC to the group C as shown in line 6 

of Procedure 3.3. Then in line 7 we remove the first sub-cluster from the group 

sC. Thus we want to pick and remove sub-clusters from sC and add them to the 

group of C to one of its items or append them to be a new item or cluster in the 

group C. Hence, we want the group sC to be empty for having the clusters in C. 

Now we have to calculate the average distance between data points in sub 

cluster C1 by assigning it the value of sCaD1 because at this stage the group C1 

is the same as sC1.   

As stated previously, for computing the average distance of a given group of 

data points we construct its Delaunay triangulation to have geometry of 

triangles. Thus the average distance is the average length of edges of the 

triangles. The average distance of sub-cluster C1 is stored in aD1 of the group 

aD. The two pointers i, and j in Procedure 3.3 deal with the two groups C and 

sC respectively. We trace all the sub-clusters in sC thus we have to decide if 

one of these sub-clusters can be added to the picked item from the group C. So, 

we have sub-clusters that are merged together to form the final clusters. For 

deciding to merge or not, we compute the distance between the sub-cluster Ci 

and each of the remaining sub-clusters in the group sC as stated in line 13 of 

Procedure 3.3. We calculate the distance between two groups of data points by 

considering the distance between the two closest data points in which each of 

these two data points belongs to different group. Other methods of measuring 

distance between clusters can be found in [28]. If the distance between the 

cluster Ci and one of the sub-clusters in sC (db2c) is less than the average 

distance within the Ci, we add this sub-cluster of sC to the cluster Ci thus the 

cluster Ci grows. In case of finding a candidate sub-cluster from the group sC 

to be merged with one of the clusters in the group C, we remove this sub-

cluster from the group sC and check if sC becomes empty to stop and get out 

from the Procedure 3.3 as shown in lines 21 to 23 and lines from 30 to 32. In 
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line 24 we have two merged sub-clusters. Hence, we recomputed the average 

distance within the grown cluster to reflect the actual average distance in it and 

to accept new merged sub-clusters. Line 25 reassigns a value for the pointer j to 

point to the previous sub-clusters in sC that does not meet the criteria of 

merging with old Ci. Because the characteristic of Ci before merging is differ 

than it after merging, thus we can have additional sub-clusters in sC in which 

they could be merged with the new formed cluster. 

When we reach line 33 of Procedure 3.3, this means that we have already 

caught one of the clusters of the given dataset from merging process. As a 

consequence, we have to look forward to finding other clusters in the given 

dataset. Thus we increment the pointer i by one to point the next location in the 

group C in which we want to find another cluster. Since we remove each of 

merged sub-clusters from the group sC, its labels will not be in a regular order. 

Hence, in line 34 we find the first label that exists in the group sC and assign it 

to the variable fl. Now the first sub-cluster in the sC is appended to a new index 

position in the group of C. Then it has been removed from the sC. The average 

distance within the new inserted sub-cluster in C has assigned the value from 

its corresponding group of sCaD. We assign a new value for the pointer j which 

points to sub-clusters in the group sC as in line 38. We repeat the above steps 

until the group sC becomes empty which means that we have obtained the 

desired clusters from the given dataset in the group C. To make C as a final 

result of our algorithm, we should back to process the released vertices from 

the shrinking phase; this is done by assigning them to their corresponding 

clusters in C. This is done by telling each cluster in C to pick the similar 

vertices to it which occurs when the distance from the cluster and the tested 

vertices is less than the average distance within this cluster. The remaining 

vertices are considered to be odd patterns in the entire dataset and we mark 

them as noise and outliers. Hence, we find the final results of clusters in the 

given dataset in a completely unsupervised manner. 
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3.2 A Toy example: Moon dataset 

For illustration purposes, we consider the following example in Fig. 3.4 to be 

solved by our KBCHT algorithm. 

In this dataset we have two moons distributed as shown in Fig. 3.4(a). 

KBCHT performs the standard Kmeans for obtaining the initial groups of 

clusters to be processed. Fig. 3.4(b) shows the result from the first phase of 

KBCHT algorithm in which we have two groups of initial clusters, one of them 

is with blue ‘o’s data points and the second one is with red ‘*’s data points. 

Now we can process these two groups in a parallel fashion. One thread picks 

the blue group and the second thread picks the red one. Hence, KBCHT 

algorithm executes its second phase in which KBCHT constructs the convex 

hull of the two groups as shown in Fig. 3.4(b), the closed set of solid black 

lines. At this step we have identified the vertices that represent each of the 

groups which reside on the drawn convex hull. 

Fig. 3.4(c) visualizes the process of shrinking these vertices which is the 

output result of the Procedure 3.1. It has been noticed that each of the two 

groups has two connected set of vertices and the shrunk vertices forms a 

general polygon shape in which KBCHT can detect convex shape as well as 

non-convex shape clusters. Procedure 3.2 has triggered on the result shown in 

Fig. 3.4(c) to find the set of sub-clusters sC for this moon dataset. 

Fig. 3.4(d) shows four sub-clusters in which sC={sC1,sC2,sC3,sC4} such 

that sC1 is the green ‘.’s data points, sC2 is the black ‘.’s data points, sC3 is the 

data points with blue ‘.’s and sC4 is the data points with red ‘.’s. KBCHT 

algorithm checks these sub-clusters for merging process. Procedure 3.3 works 

on the result shown in Fig. 3.4(d) to find final clusters C. At the beginning, the 

group C={sC1} that is C1 is equal to sC1 and sC becomes {sC2,sC3,sC4} after 

removing sC1 from it. KBCHT searches for one or more of the sub-clusters in 

sC to be merged with C1 according to Procedure 3.3. KBCHT finds that sC3 

should be merged with C1 thus C={sC1+ sC3} where C1 is the two sub-clusters 

sC1 and sC3 together. Then by the next iteration C={sC1+ sC3, sC2} where C2 is 

sC2 and sC={ sC4}. According to Procedure 3.3 sC2 should be merged with sC4 
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thus C={sC1+ sC3, sC2+ sC4} and sC4 is removed from sC to be an empty 

group. Hence, we obtain the two clusters of the moon dataset. Fig. 3.4(e) shows 

the final of clusters that obtained by KBCHT algorithm. 

 
(a) 

(b) (C) 

(d) (e) 

Figure 3.4: Toy example. (a) The moon dataset. (b) Result from the standard Kmeans where 

blue ‘o’s are in one cluster and red ‘*’s are in another cluster and each of them are enclosed 

by its convex hull. (c) The shrinking process. (d) The process of finding sub-clusters. (e) The 

final result of our KBCHT algorithm. 
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3.3 Simulation and Results 

3.3.1 Datasets results 

We illustrate the strength of the KBCHT algorithm in a number of artificial two 

dimensional datasets, since the results can easily be verified visually. We 

generate four types of datasets DS1, DS2, DS3 and DS4 with 350, 1000, 2000, 

and 6000 data points respectively as shown in Fig. 3.5. Now, our purpose is to 

verify that KBCHT algorithm should be able to detect the clusters in these 

datasets, which can be differentiated by eyes, successfully. DS1 is considered 

to be a simple dataset that contains four well separated clusters, but the others 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

      Figure 3.5: Artificial datasets. (a) DS1. (b) DS2. (c) DS3. (d) DS4.  
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contain clusters with complex non-convex shapes, different sizes, densities, 

noise and outliers. We compare our algorithm with the Affinity Propagation 

[67] algorithm in which messages are exchanged between data points until the 

final clusters are found, because it does not need to be rerun many times each 

with different initial conditions and does not require to input the number k of 

clusters.  Also, we compare it with one of the recently spectral clustering 

algorithms because they are designed to handle non-convex shaped clusters and 

solve the problem of expensive computations of them which is the spectral 

clustering using Nystrom method [76]. 

As stated previously, we have to do the clustering task with no prior 

information knowledge about the given dataset and this is the goal of our 

proposed KBCHT algorithm. As a consequence, we have treated the given 

datasets as closed black boxes. For this reason, we have used the same value of 

k, in case of our proposed KBCHT algorithm and Spectral clustering using 

Nystrom algorithm, to figure out the output with no prior information. In 

addition, as we have generated these four artificial datasets, we do further step 

in assigning the true value of k to the Spectral clustering using Nystrom 

algorithm 

DS1: This dataset contains 350 data points distributed into 4 well separated 

clusters. However, it is suitable to find its clusters using the standard Kmeans. 

But when we perform our KBCHT its first phase does not detect the four 

clusters correctly. We deal with the given dataset as black boxes that mean we 

do not have a prior knowledge about how many clusters exist or how they are 

distributed. Thus we roughly choose k=5 and our KBCHT correctly identifies 

the four clusters as shown in Fig. 3.6(a). Fig. 3.6(b) shows the result of 

clustering using Affinity Propagation in which it does not use any input 

parameters. However, it does not correctly detect the number of clusters. It has a 

result of 11 clusters. Since the spectral clustering using Nystrom method has 

two inputs: sigma and the number of clusters which are user defined. We use a 

sigma to equal 20 and use the same value of k=5 for the reason stated above. 

Even though this is a simple dataset Fig. 3.6(c) shows the weakness of the 
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spectral clustering when its parameters are not identified correctly. In which it 

has a result of five clusters where it wrongly splits one of the clusters into two. 

To be more honest with the used spectral clustering, we rerun it with k=4 and 

we obtain a result that correctly identifies the four clusters as shown in Fig. 

3.6(d). 
 

DS2: This dataset contains 1000 data points distributed into 8 complex shaped 

clusters and also with present noise and outliers. Fig. 3.7 (a) shows the 

effectiveness of our KBCHT algorithm in identifying the true 8 clusters 

however we roughly choose k=10. The noise and outliers are correctly marked 

as the black ‘+’s in Fig. 3.7(a). This is due to how we measure the Delaunay 

triangulation average AVG within the initial group, where we exclude the 

convex hull vertices from the computation of the AVG which eliminates the 

effect of outliers. The Affinity Propagation detects 20 clusters as shown in Fig. 

3.7(b). For the spectral clustering using Nystrom method with sampling equals 

to 400 and we set sigma=20 and also we run it one time with k=10 as chosen for 

our KBCHT and another time using correct number of clusters k=8. Fig. 3.7(c) 

and Fig. 3.7(d) improves that our proposed KBCHT outperforms it in case of 

cluster quality. 

DS3: This dataset contains 2000 data points distributed into 5 complex shaped 

clusters and also with present noise and outliers. Fig. 3.8 (a) shows the strength 

of our KBCHT algorithm in identifying 5 clusters correctly. However, we 

roughly choose k=15. The noise and outliers are correctly marked as the black 

‘+’s in Fig. 3.8(a). In fact, the shrinking phase of KBCHT algorithm traverses 

all candidate vertices that could be engaged into the representative boundary of 

the given initial groups, this is due to the high priority given to the longest edge 

between two consecutive vertices to be shrunk according to the natural of the 

given initial group that it is reflected by the calculated delaunay triangulation 

average inside this group. The Affinity Propagation detects 28 clusters as shown 

in Fig. 3.8(b). We proceed as above in selecting sampling of 400 and sigma=20 

for the spectral clustering using Nystrom method but it triggers an error on the 

value of sigma thus we tuned it to be equal to 5 and also we run it one time with 
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k=15 as chosen for our KBCHT and another time using the correct number of 

clusters k=5. Fig. 3.8(c) shows that it does not fully detect the cluster correctly 

but in Fig. 3.8(d) the spectral clustering shows that it handles two clusters 

correctly but without identifying noise and outliers. 
 

DS4: This dataset contains 6000 data points distributed into 11 complex shaped 

clusters and also with presence of noise and outliers. Fig. 3.9 (a) shows that our 

KBCHT algorithm finds all of the 11 clusters correctly. However, we roughly 

choose k=15. The noise and outliers are correctly marked as the black ‘+’s in 

Fig. 3.9(a). The Affinity Propagation detects 53 clusters as shown in Fig. 

3.9(b). The spectral clustering using Nystrom method with sampling equals to 

400 and sigma=5; the result shown in Fig. 3.9(c) with k=15 as chosen for our 

KBCHT and when using the correct number of clusters k=11 we obtain clusters 

as shown in Fig. 3.9(d). 

In the next Section, we do further analysis of the given results in which we 

measure the obtained clustering quality rather than subjectively evaluating the 

results. 
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(a) (b) 

(c) (d) 

Figure 3.6: Clustering Results of DS1: (a) our proposed KBCHT (using k=5). (b) Affinity 

Propagation. (c) Spectral clustering using Nystrom method (samples=100, sigma=20 and k=5). 

(d)  Spectral clustering using Nystrom method (samples=100, sigma=20 and k=4). 
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(a) (b) 

(c) (d) 

Figure 3.7: Clustering Results of DS2: (a) our proposed KBCHT (using k=10). (b) Affinity 

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=20 and k=10). 

(d)  Spectral clustering using Nystrom method (samples=400, sigma=20 and k=8). 
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(a) (b) 

(c) (d) 

Figure 3.8: Clustering Results of DS3: (a) our proposed KBCHT (using k=15). (b) Affinity 

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=5 and k=15). 

(d)  Spectral clustering using Nystrom method (samples=400, sigma=5 and k=5). 
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(a) (b) 

(c) (d) 

Figure 3.9: Clustering Results of DS4: (a) our proposed KBCHT (using k=15). (b) Affinity 

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=20 and k=15). 

(d)  Spectral clustering using Nystrom method (samples=400, sigma=20 and k=11). 
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3.3.2 Performance Analysis 

In order to prove the effectiveness and the strength of our proposed KBCHT 

algorithm, we construct experiments for measuring the performance in case of 

time cost and clustering accuracy according to the visual results shown in 

Section 3.3.1. Table 3.1 shows the comparison of the performance of our 

proposed KBCHT algorithm and the used clustering algorithms in which we 

have been used in Section 3.3.1 for each of the results that obtained visually in 

previous section. We measure the time that it takes for completing its mission 

of clustering in seconds. Furthermore, it is important to measure how they are 

accurate in identifying the final results which is more important. For measuring 

the clustering accuracy, we follow the technique used in [77] and [76] to 

evaluate the quality of the resultant clusters and we use the following equation: 

rhhgeVh = ∑ �{ � , �V)(h�)|���� �                                        (3.3) 

Where n is the number of data points in the given dataset, yi and ci are the true 

cluster label and the obtained cluster label respectively. The delta function �( , h) equals 1 if y=c and equals 0 otherwise. To measure the accuracy, we 

need a permutation function that maps each obtained cluster label to a true 

cluster label. Moreover, for achieving the optimal matching the Hungarian 

algorithm [78] is used. 

As shown in Table 3.1, our proposed KBCHT algorithm has a clustering 

accuracy as high as 100% for all of the datasets that have been used. For DS1, 

we have also an accuracy of 100% for the spectral clustering using Nystrom 

method but when we use the exact number of clusters that included in DS1 

even in this case our proposed KBCHT outperforms it in the execution time. 

But when using the same value of k, our algorithm has the superiority in both 

the time cost and the clustering accuracy. To find the final results of clusters in 

DS1, our KBCHT takes 0.12 sec, 0.03 sec and 0.12 sec for the first, the second 

and the third of its phase respectively. 

For the DS2, our proposed KBCHT algorithm executes the first phase in 0.3 

sec, phase two in 1.03 sec and the last phase in 0.87 sec. Hence the overall time 
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cost is 2.2 sec as shown in Table 1. Our KBCHT takes 1.27 sec, 0.92 sec and 

5.11 sec for its three phases respectively for the DS3. And for the DS4 it spends 

the most of its time in executing the third phase in which it takes 32.55 sec, the 

first and the second phases are executed in 5.1 sec and 10.84 sec respectively. 

However, for the DS4 our algorithm takes much time than the spectral 

clustering algorithm, the overall performance of KBCHT improves the 

clustering results in case of the quality of the results compared with this small 

gap reported in the execution time. 

 

 

 

Table 3.1: Comparison of the performance of our proposed KBCHT algorithm 

and existing algorithms with time cost and clustering accuracy.  

 

Dataset Algorithm 
Time Cost 

(sec) 

Clustering 

Accuracy (%) 

DS1 

Proposed KBCHT (k=5) 0.27 100 

Affinity Propagation 7.58 39.62 

Spectral clustering using Nystrom 

(samples=100,sigma=20,k=5) 
0.31 89.94 

Spectral clustering using Nystrom 

(samples=100,sigma=20,k=4) 
0.29 100 

DS2 

Proposed KBCHT (k=10) 2.20 100 

Affinity Propagation 21.38 53.06 

Spectral clustering using Nystrom 

(samples=400,sigma=20,k=10) 
3.19 52.02 

Spectral clustering using Nystrom 

(samples=400,sigma=20,k=8) 
2.97 60.76 

DS3 

Proposed KBCHT (k=15) 7.30 100 

Affinity Propagation 41.78 23.69 

Spectral clustering using Nystrom 

(samples=400,sigma=5,k=15) 
10.39 44.95 

Spectral clustering using Nystrom 

(samples=400,sigma=5,k=5) 
10.27 91.84 

DS4 

Proposed KBCHT (k=15) 48.49 100 

Affinity Propagation 453.98 25.62 

Spectral clustering using Nystrom 

(samples=400,sigma=20,k=15) 
43.23 65.12 

Spectral clustering using Nystrom 

(samples=400,sigma=20,k=11) 
43.71 66.21 
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Does the choice of k in our proposed algorithm affect the performance: As 

we have mentioned in the previous section, the proposed KBCHT does not 

require prior knowledge information for finding the final results of clusters in a 

given dataset. It makes self analysis to discover the clusters. But how it 

performs when changing the value of k? For this purpose we construct 

experiments on the DS3 and we choose k to be from 2 to 70. For selecting k=2, 

the DS3 has been partitioned into two initial groups from the first phase as 

shown in Fig. 3.10(a). In this case all the overhead will be concentrated on the 

second phase of KBCHT in which the shrinking process investigates more 

complex shaped group and more vertices to find a set of shrunk vertices. 

KBCHT does not accept to have only one partition from the first phase. The 

two partitions of first phase are illustrated in Fig. 3.10 (a) that takes 0.34 sec. 

Fig. 3.10(b) and 3.10(c) show the second phase operations of shrinking vertices 

and finding sub-clusters (8 sub-clusters) respectively. In which the effect of 

noise and outliers are eliminated as shown in Fig. 3.10(c). The second phase 

takes 18.13 sec to be accomplished. Fig. 3.10(d) shows the final result of 

KBCHT after merging phase and detecting noise and outliers which it takes 

2.75 sec. 

Fig. 3.11 shows how each of the three phases of our KBCHT algorithm 

performs with different values of k. It has been shown that the most consuming 

phase is the third one with the increasing values of k. Since the number of 

comparisons increased between pairs of sub-clusters. As increasing the value of 

k, the second phase execution time drops dramatically. Because as the group 

under shrinking process becomes smaller, the complexity of the group 

decreases thus it can be handled faster. The most challenging case on shrinking 

of DS3 is when k=2 as shown in Fig. 3.10(b) in which each group has long 

embedded boundaries to be investigated by the shrinking process. KBCHT was 

proud to face this challenge to prove its efficiency and strength in handling this 

type of dataset. In Fig. 3.12 we show the overall time cost of the KBCHT 

algorithm when varying the number of k. As the value of k increased the overall 

time cost has increased too. The best value of k is when it equals 10. At this  
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value of k, the execution time spends less time among other values and equals 

to 6.49 sec. However, we choose the value of k to obtain initial groups from the 

first phase of KBCHT. The resultant number of partitions is not always the 

same as k. This is because KBCHT uses the standard Kmeans in its first phase 

and it may suffer from bad dropped initial prototypes thus a problem of dead 

prototypes may be occurred. Fig. 3.13 shows the exact number of obtained 

partitions from the first phase as the value of k increases. In case of k=15 in this 

experiment, KBCHT obtains only 7 partitions from the first phase which it 

takes 0.89 sec to have them. According to this 11 sub-clusters have been 

(a) 
 

(b) 

(c) (d) 

Figure 3.10: Analysis of KBCHT when k=2 on DS3. (a) Result from the first phase. (b) The 

Shrinking process. (c) the sub-clusters which is found by KBCHT (d)  The final result of KBCHT 

after merging sub-clusters and identifying noise and outliers. 
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considered in 2.72 sec then the merging process to find the final clusters takes 

3.93 sec thus the overall time cost is 7.54 sec. However, in Fig. 3.8(a) and 

Table 3.1 when we have used the value of k equals 15, we caught 14 initial 

partitions from the first phase of KBCHT and 16 sub-clusters to be merged. We 

evaluate the clustering accuracy for each used value of k. As illustrated in Fig. 

3.14, KBCHT maintains a steady state of high accuracy rate as 100% for the 

majority of the used k. For k=50, 55, 60 and 70, the clustering accuracy is 

99.21%, 98.30%, 99.94% and 99.65% respectively. 

 

Figure 3.11: Time cost (sec) of KBCHT three 

phases vs. varying number of k. red: first phase, 

blue: second phase and black: third phase. 

(based on DS3) 

Figure 3.12: Time cost (sec) of KBCHT vs. 

varying number of k. (based on DS3) 

 

Figure 3.13: Obtained number of initial 

partitions from the first phase vs. varying 

number of k.  (based on DS3) 

Figure 3.14: Measuring the clustering 

accuracy (%) of KBCHT vs. varying number of 

k. (based on DS3) 
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We analyze the result of how k affects our KBCHT algorithm based on one 

of our complex generated dataset. To do further investigation on k, thus we can 

relatively make some specific judgment. We have generated relatively simple 

dataset contains 800 data points distributed into 5 clusters which is named DS5 

as shown in Fig. 3.15. 

We have repeated the same experiment situation as we did for DS3 in which 

we run KBCHT algorithm on the dataset DS5 with varying k from 2 to 70. 

Fig. 3.16 shows time cost in seconds for each phase of KBCHT algorithm. 

It is obvious that the third phase is the most consuming one especially when k 

increased. The obtained result in Fig. 3.16 is somewhat close in its concept to 

the result obtained in Fig. 3.11. Fig. 3.17 provides the overall time cost in 

seconds for KBCHT algorithm in which it starts high when k=2 then it is 

dropped then as k increased the execution time increased. Fig. 3.18 gives an 

overview of the actual number of partitions that obtained from the first phase 

since it suffers from bas initial condition that caused dead prototypes. In 

addition, Fig. 3.19 shows the clustering accuracy as increasing the value of k 

which maintains the highest steadily state.          

 
Figure 3.15: Artificial dataset DS5. 
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Experimenting on DS3 and DS5, we can notice that the overhead is high 

with respect to the execution time when k=2 and drops dramatically when k=4. 

In case of clustering accuracy, we can conclude that when we have applied 

some of the large values of k, the accuracy may suffer slightly in case of 

complex shaped dataset.  

For DS3, the best result can be achieved when k=10. Moreover, the result 

may be acceptable when k is ranging between 5 and 15. On the other side of 

Figure 3.16: Time cost (sec) of KBCHT three 

phases vs. varying number of k. red: first phase, 

blue: second phase and black: third phase. 

(based on DS5) 

Figure 3.17: Time cost (sec) of KBCHT vs. 

varying number of k. (based on DS5) 

 

Figure 3.18: Obtained number of initial 

partitions from the first phase vs. varying 

number of k.  (based on DS5) 

Figure 3.19: Measuring the clustering 

accuracy (%) of KBCHT vs. varying number of 

k. (based on DS5) 
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DS5, we have obtained the best result when k=4. Furthermore, when k is 

between 4 and 10 the result could be acceptable. Hence, we can choose the 

lower bound of k to be 5. Of course, this does not prevent the interested 

researchers from using any approaches that offers auto determination of the 

value of k for Kmeans algorithm. However, we recommend that the value of k 

is not less than 5. 
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Chapter 4 

 

 

KBCHT: A TOPOLOGY PRESERVING 

MAPPING AS A PREPROCESSING 
 

 
 

 

 

 

4.1 Overview 

In the former Chapter, we have proved the efficiency of our proposed KBCHT 

algorithm on our generated 2-D artificial datasets. In this Chapter, we 

demonstrate the performance of our KBCHT algorithm based on high 

dimensional real datasets. In order to handle real datasets adequately, there high 

dimensionality needs to be reduced for coping the cures of dimensionality and 

other undesired features of high dimensional space [83]. The dimensionality 

reduction can be used as a visualization tool of high dimensional data [83].  

There are many researches that are concerned in reducing the high 

dimensionality for data analysis. Furthermore, to enhance the performance of 

classification or clustering on these data, their dimensionality should be 

reduced before applying classification or clustering techniques [83, 93-96]. As 

a consequence, we can benefit from any of the available techniques in reducing 

the dimensionality of the given datasets to be engaged with our proposed 

KBCHT algorithm. 

In this thesis, we have used a topographic mapping technique in conjugate 

with our KBCHT algorithm. A topographic mapping is a transformation of high 
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dimensional data which preserves some structure in the data such as the points 

which are mapped close to each other share some common properties while in 

contrast the points which are mapped far from each other do not share a 

common feature or property. 

In this Chapter, we use the Generative Topographic Mapping (GTM) as a 

basis preprocessing step for our proposed KBCHT algorithm. 

4.2 Generative Topographic Mapping (GTM) 

The GTM is a statistical model for modeling the probability density of data 

points and finding non-linear mapping of high dimensional space onto low 

dimensional space.  

The basis of the GTM is to generate a grid of K latent points z1,z2,…,zK in 

latent space. These latent points are mapped non-linearly into the data space 

using a set of M basis Gaussian functions with respect to a set of weights W, 

where W is M x D, and D is the dimensionality of data space. The GTM is 

optimized using the Expectation-Maximization (EM) algorithm [2], [28].  

4.3 Simulation Experiments 

After validating the performance of the proposed algorithm on complex 

artificial datasets, we have accomplished many experiments to evaluate the 

efficiency of our proposed algorithm on high dimensional datasets over the 

same competing algorithms as in Chapter 3. All the experiments in this thesis 

have been performed using an Intel dual at 1.87 GHz with 2 GB of RAM. A 

brief description of the used real datasets and simulation results will be 

presented in the following sub sections. 

4.3.1 Real Datasets 

In our simulation experiments we have used 10 real datasets. All of these 

datasets are available from the UCI machine learning repository [88]. General 

information about these datasets is given in Table 4.1.  
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Some of these real datasets have missing values and different types of 

variables with different scales. Hence, they would be preprocessing before 

engaging them into the clustering process (Appendix B explains how to prepare 

the data before clustering). 

 

 

4.3.2 Parameters Setting 

As stated previously, we have to do the clustering task with no prior 

information knowledge about the given dataset and this is the goal of our 

proposed KBCHT algorithm. As a consequence, we have treated the given 

datasets as closed black boxes. As a result in our experiments, the value of k is 

set to 5 for all of the used real datasets except for the largest used dataset 

(Pendigits) we use a value of 15. The same value of k is used for both our 

proposed KBCHT algorithm and the spectral clustering using Nystrom 

algorithm. 

In this Chapter and as mentioned previously, we have used the GTM as a 

basis preprocessing step for our proposed algorithm. Hence, the grid of latent 

points and the grid of base functions have been chosen to be 10x10 and 3x3 

respectively for all of the 10 used UCI datasets. 

Moreover, for the spectral clustering using Nystrom algorithm, the value of 

sigma is set to 50 and the sample size has been chosen to be 100 for all of the 

Table 4.1: The Descriptions of the used UCI datasets 

 

No. Datasets # of Objects # of Dimensions # of clusters 

1 Iris 150 4 3 

2 Libras movements 360 90 15 

3 Wine 178 3 3 

4 Glass 214 10 6 

5 Pendigits 10992 16 10 

6 Image Segmentation 2310 19 7 

7 Spambase 4601 57 2 

8 Yeast 1484 8 10 

9 Arrhythmia 452 279 16 

10 Dermatology 366 34 6 
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used datasets. But we have faced a problem that the used default sample size of 

100 is not valid for some datasets. Thus, we have chosen a sample size of : 

150 for Wine, Glass, Yeast, Arrhythmia and Dermatology.  

300 for Image segmentation.  

1500 for Pendigits. 

4601 for Spambase. 

In which the Spambase dataset does not accept to have any sample size except 

the value of its whole number of objects. 

For the Affinity Propagation algorithm, we have used its default setting as 

in [67]. 

4.3.3 Results Analysis 

For illustration of the effectiveness of our algorithm, we have conducted the 

same performance measurements that we already used in Chapter 3. 

Table 4.2 and Fig. 4.3 summarize the obtained simulation results on real 

datasets in which our proposed algorithm outperforms the other algorithms. 

For Iris dataset, as an example, our proposed KBCHT using GTM has the 

highest performance comparing with other algorithms. It has an accuracy of 

88%. In contrast, the spectral clustering using Nystrom has an accuracy of 

57.33% and the Affinity Propagation has 33.33% clustering accuracy. 

Moreover, our proposed KBCHT using GTM obtained more accurate result 

faster than the other algorithms. 

Fig. 4.1 shows the result of GTM on the Iris dataset, where the Iris dataset 

has been projected on 2 dimensional space. It is obvious that the Iris dataset has 

one linearly separable cluster from the other two clusters; in which the other 

two clusters are overlapped. The GTM takes 0.26 sec, the first phase of 

KBCHT takes 0.06 sec, the second phase takes 0.14 sec and the last phase 

executed in 0.11 sec. Hence, the overall time cost for the proposed KBCHT 

using GTM is 0.57 sec.   

 



www.manaraa.com

52 

 

 

Figure 4.1:  The result of using GTM on Iris dataset (the three clusters are 

distinguished using different color and symbol for each cluster). 

 

The results of experiments on the rest of the used UCI datasets are 

summarized in Table 4.2. In which the performance of our proposed KBCHT 

using GTM and exiting algorithms has been compared with time cost in 

seconds and the clustering accuracy which is calculated as mentioned in 

Chapter 3. 
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Table 4.2: Comparisons of the performance of our proposed KBCHT algorithm using 

GTM and existing algorithms with time cost and clustering accuracy on real datasets. 

 

Datasets Algorithms 
Time Cost 

(sec) 

Clustering 

Accuracy 

(%) 

Iris 

Proposed KBCHT using GTM 0.57 88.00 

Affinity Propagation 6.03 33.33 

Spectral clustering using Nystrom 0.61 57.33 

Libras 

Movements 

Proposed KBCHT using GTM 0.99 30.56 

Affinity Propagation 14.64 6.67 

Spectral clustering using Nystrom 0.94 24.72 

Wine 

Proposed KBCHT using GTM 0.63 93.82 

Affinity Propagation 5.77 39.88 

Spectral clustering using Nystrom 0.79 65.16 

Glass 

Proposed KBCHT using GTM 0.70 65.02 

Affinity Propagation 6.81 48.59 

Spectral clustering using Nystrom 1.29 63.55 

Pendigits 

Proposed KBCHT using GTM 103.13 38.27 

Affinity Propagation - - 

Spectral clustering using Nystrom 212.11 29.10 

Image 

Segmentation 

Proposed KBCHT using GTM 3.88 31.52 

Affinity Propagation 214.32 14.29 

Spectral clustering using Nystrom 3.81 14.58 

Spambase 

Proposed KBCHT using GTM 93.03 78.91 

Affinity Propagation 1172.53 60.59 

Spectral clustering using Nystrom 6447.31 62.53 

Yeast 

Proposed KBCHT using GTM 6.80 39.80 

Affinity Propagation 106.53 31.19 

Spectral clustering using Nystrom 2.80 20.21 

Arrhythmia 

Proposed KBCHT using GTM 2.13 56.94 

Affinity Propagation 13.78 13.71 

Spectral clustering using Nystrom 2.38 55.75 

Dermatology 

Proposed KBCHT using GTM 0.97 86.07 

Affinity Propagation 10.59 22.95 

Spectral clustering using Nystrom 1.45 58.47 
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For illustration purpose and easy to compare, we provide the clustering 

accuracy that obtained from all the used datasets by our proposed algorithm 

and the existing algorithm in Fig. 4.2. On these datasets our proposed algorithm 

achieves the highest accuracy compared with other algorithms, the results 

indicates the effectiveness and the strength of our proposed algorithm. From 

Table 4.2 and Fig 4.2, we can notice that the Affinity Propagation algorithm 

failed to provide result on the Pendigits dataset due to memory limitation which 

gives an indication that the Affinity Propagation algorithm suffers from 

memory difficulties. 

 

 
Figure 4.2: Clustering accuracy results on real datasets 
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Chapter 5 

 

 

CONCLUSIONS AND FUTURE RESEARCH 
 

 
 

 

 

5.1     Conclusions and Future Research 

In this thesis, we have introduced a new clustering algorithm named KBCHT 

(Kmeans-Based Convex Hull Triangulation clustering algorithm) that is able 

to detect clusters with complex non-convex shapes, different sizes, densities, 

noise and outliers.  

The idea behind the KBCHT is to divide the clustering task into three 

phases. The first phase benefit from the first run of the widely used simple 

Kmeans algorithm in which the experiments show that KBCHT gives good 

results despites it is badly chosen initial conditions. Then in the second phase 

KBCHT takes the initial groups from the first phase and constructs a convex 

hull for each group. The vertices obtained by convex hull are shrunk until we 

catch a set of sub-clusters in which the shrinking mechanism does not maintain 

the convexity of processed groups. The last phase applies merging of sub-

clusters based on the Delaunay triangulation. We also have used one of the 

famous topology preserving mapping methods which is the Generative 

Topographic Mapping (GTM). The GTM have been used as a preprocessing 

step to our proposed KBCHT algorithm. The simulation results show the 
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superiority of our proposed algorithm over recently introduced ones in case of 

the clustering accuracy and time cost.  

In future works and according to obtained results in Fig. 3.11, the third 

phase consumes the most time in the KBCHT since we consider all data points 

in each sub-clusters, thus we will do farther analysis to benefit from the 

sampling techniques to make it faster. While we have assumed the Euclidean 

distance throughout this thesis, we can use general metrics as shown in 

appendix C to show the effect of the used metric on our proposed algorithm. 

The computed value of AVG average from Delaunay triangulation can be 

recomputed each time we have a shrunk vertex according to our proposed 

mechanism, thus we may have more robust value. The proposed KBCHT 

algorithm can be implemented in a distributed environment. Also as have 

shown in Chapter 4, the GTM uses a fixed grid of latent points and a fixed grid 

of Gaussian basis function. Hence the initialization of GTM is the same despite 

the used data set. This may affect the training results. Thus it needs further 

investigations to adaptively choose the initial parameters based on the given 

dataset. Furthermore, in future work we can conduct more experiments that 

directly apply the proposed algorithm to high dimensional datasets without 

preprocessing the data.    

  



www.manaraa.com

57 

 

 

 
 

Appendices   

  



www.manaraa.com

58 

 

Appendix  A 

 

 

SIMULATION ENVIRONMENT 
 

 
 

 

 

We have implemented our proposed KBCHT algorithm using MATLAB 

(version 7.9.0.529 (R2009b)). Furthermore, all the experiments in this thesis 

have been performed using 64-bit windows environment of Intel dual at 1.87 

GHz with 2 GB of RAM. 

In fact, MATLAB (MATrix LABoratory) is a high-level language and 

interactive environment that enables you to perform computationally intensive 

tasks faster than with traditional programming languages such as C, C++, and 

Fortran.   

In addition, we have used the MATLAB implementation of both Affinity 

Propagation algorithm and Spectral clustering using Nystrom algorithm. These 

implementations are available from the websites (last visit on Oct. 2011): 

• http://www.psi.toronto.edu/index.php?q=affinity%20propagation 

• http://alumni.cs.ucsb.edu/~wychen/sc.html 
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Appendix  B 

 

 

DATA PREPARATION 
 

 
 

 

 

Dealing with missing values 

The collected data can be represented in a matrix notation (two modes) as in 

equation 1.1 of chapter 1. Hence, the missing values could be in records or 

columns. In record: if the most of data are missing then we delete this record. 

In column: if the most of data are missing then we delete this column. But if 

the missing values are not too much, we have to replace these missing values 

with: 

1. The average value of all column data in which the missing occurred and 

then is done before running clustering algorithms. 

2. By making a pre clustering algorithm: 

2.1 Make clusters based on all variables, then take average value of 

objects that belong to the same cluster to replace the missing values. 

2.2 To know which one variable (column) is more similar to the one with 

missing values. Then replace the missing values with the average 

value of the most similar variable. 

 

Normalization 

The attributes of the entire dataset may be collected from different scales. 

Hence, the large scale ones may cause the bias. So, data should be normalized 
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thus all attributes of the dataset would be in the same scale. Moreover, the 

objects of the dataset can be described by different types of attributes such as 

nominal, categorical, ordinal, interval or ratio. There are different approaches to 

cluster these objects. One of them is convert attributes of different types into 

attributes of the same type. A more detail of scale conversion could be found in 

chapter 3 of [28]. 

 

Sampling 

Sampling can be used to pick a portion of large dataset because processing the 

entire dataset is too expensive and time consuming. The sampling may be 

obtained randomly which is the simplest way. But to be more effective, it 

should reflect an approximation of the same characteristic as the original 

dataset. 

 

Dimensionality reduction 

High dimensional dataset requires a large amount of time and memory to be 

analyzed. There are two major types of dimensionality reduction methods: 

feature transformation and feature selection. 

In feature transformation, the original high dimensional space is projected 

linearly or non-linearly into a lower dimensional space. 

In feature selection, this method selects a subset of meaningful dimensions 

from the original high dimensions of the entire dataset.  
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Appendix C 

 

 

DISTANCE METRICS 
 

 
 

 

 

In this section, we present some of the common used metrics. The Minkowski 

(Manhatten, Euclidean, and Maximum distances), the Mahalanobis distance 

and the Cosine distance. 

 

Minkowski distance 

A metric or distance is used to measure the similarity or dissimilarity between 

objects. While we have assumed the Euclidean distance throughout this thesis, 

a more general metric between two objects X and Y could be addressed. This 

general metric is named Minkowski metric and is defined as (p-norm): 

l�(�, �) = ?�|�� −  �|�	
���

B
� �2  , ) ≥ 1                           (Z. 1) 

Where d is the dimension of objects X (x1,x2,….xd) and Y (y1,y2,….yd). Thus the 

Euclidean distance is when p = 2 (2-norm). And when p = 1 (1-norm) dp is 

called Manhattan or city block distance which is the shortest path between X 

and Y where each segment of the path is parallel to a coordinate axis. And 

when p = ∞ (∞-norm) is called maximum distance which is the distance 

between X and Y corresponds to the maximum distance between the 

projections of X and Y onto each of the d coordinate axes. 
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Mahalanobis distance 

Mahalanobis distance removes the distance distortion caused by linear 

combinations of attributes. It is defined as: 

lEK�(�, �) = �(� − �)∑�� (� − �)"                        (C.2) 

Where ∑  is the covariance matrix of the dataset.  If ∑  = Identity, this is the 

Euclidean distance. 

An important property of the Mahalanobis distance is that it is invariant 

under nonsingular transformation. It suffers from high computation needed to 

compute the covariance matrix based on all objects in the dataset. 

 

Cosine distance 

Cosine distance calculates the cosine of the angle between two vectors. It can 

be defined as: 

l�F�(�, �) = �. �|�||�|                                       (Z. 3) 

Where X.Y is the dot product and | . | is the (2-norm). 
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