
www.manaraa.com

In the Name of ALLAH the Merciful the Compassionate

Islamic University of Gaza

Deanery of Higher Studies

Faculty of Engineering

Computer Engineering Department

EEEEFFICIENT FFICIENT FFICIENT FFICIENT DDDDATA ATA ATA ATA CCCCLUSTERING LUSTERING LUSTERING LUSTERING

AAAALGORITHMSLGORITHMSLGORITHMSLGORITHMS

Mohammed B. Abubaker

Advisor

Prof. Hatem M. Hamad

(Professor of Computer Engineering)

A Thesis Submitted to the Department of Computer Engineering in partial

fulfillment of the requirements for the degree of Master of Science in

Computer Engineering.

Palestine, Gaza
2011 - 1432

www.manaraa.com

II

www.manaraa.com

III

TABLE OF CONTENTS

Abstract .. V

Abstract (AR) .. VI

Dedication ... VII

Acknowledgments .. VIII

List of Figures ... IX

List of Tables ... XI

1 Introduction ... 1

1.1 Data Clustering .. 1

1.1.1 Basic Concepts of Clustering .. 2

1.2 Importance of Clustering.. 3

1.3 Motivations .. 4

1.4 Thesis outlines .. 5

2 Related Literature Reviews... 7

2.1 Overview.. 7

2.2 Similarity Graphs .. 9

2.3 Kmeans Algorithm .. 9

2.4 CURE and Chameleon Algorithms ... 10

2.5 Affinity Propagation Algorithm ... 11

2.6 Spectral Clustering Algorithm ... 11

2.6.1 Spectral Clustering using Nystrom Method .. 12

2.7 Topology Preserving Mapping ... 12

2.7.1 Self-organizing Map (SOM) .. 13

2.7.2 Generative Topographic Mapping (GTM) ... 13

3 KBCHT: Kmeans-Based Convex Hull Triangulation Clustering Algorithm 15

3.1 Proposed KBCHT Algorithm .. 15

3.1.1 The First Phase: The use of standard Kmeans .. 17

3.1.2 The Second Phase: The Shrinking .. 18

3.1.3 The Third Phase: Merging sub-clusters .. 26

3.2 A Toy Example: Moon dataset ... 30

3.3 Simulation and Results ... 32

3.3.1 Datasets Results .. 32

3.3.2 Performance Analysis ... 40

4 KBCHT: A Topology Preserving Mapping As A Preprocessing 48

4.1 Overview.. 48

4.2 Generative Topographic Mapping (GTM) .. 49

4.3 Simulation Experiments ... 49

4.3.1 Real Datasets ... 49
4.3.2 Parameters setting ... 50

4.3.3 Results Analysis .. 51

5 Conclusions and Future research .. 55

5.1 Conclusions and Future research .. 55

Appendices ... 57

www.manaraa.com

IV

A. Simulation Environment ... 58

B. Data Preparation .. 59

C. Distance Metrics ... 61

References... 63

www.manaraa.com

V

ABSTRACT

Data Clustering is one of the most important issues in data mining and machine

learning. Clustering is a task of discovering homogenous groups of the studied

objects. Recently, many researchers have a significant interest in developing

clustering algorithms. The most problem in clustering is that we do not have

prior information knowledge about the given dataset. Moreover, the choice of

input parameters such as the number of clusters, number of nearest neighbors

and other factors in these algorithms make the clustering more challengeable

topic. Thus any incorrect choice of these parameters yields bad clustering

results. Furthermore, these algorithms suffer from unsatisfactory accuracy when

the dataset contains clusters with different complex shapes, densities, sizes,

noise and outliers. In this thesis, we propose a new approach for unsupervised

clustering task. Our approach consists of three phases of operations. In the first

phase we use the most widely used clustering technique which is Kmeans

algorithm for its simplicity and speed in practice. We benefit just from one run of

Kmeans, despites its accuracy, to discover and analyze the given dataset by

catching preliminary clusters to insure closely grouping sets. The second phase

takes these initial groups for processing them in a parallel fashion using

shrinking based on the convex hull of the initial groups. From the second phase

we obtain a set of sub-clusters of the given dataset. Hence, the third phase

considers these sub-clusters for merging process based on the Delaunay

triangulation. This new algorithm is named as Kmeans-Based Convex Hull

Triangulation clustering algorithm (KBCHT). We present experiments that

provide the strength of our new algorithm in discovering clusters with different

non-convex shapes, sizes, densities, noise and outliers even though the bad initial

conditions used in its first phase. These experiments show the superiority of our

proposed algorithm when comparing with most competing algorithms.

Keywords: data clustering, data mining, machine learning, homogenous groups,

non-convex shapes, unsupervised clustering, Kmeans, shrinking, convex hull and

triangulation.

www.manaraa.com

VI

 رزميات فعالة للتنقيب عن البياناتخوا

ou^f×Ö<VÝ<J†Óeçe_<Ý^Še<‚Û¦< <

 ����� ��	
�
�� �� �� ����� �������� ���� ����	 �� ! ��"� � ! � �������� #�$%! &�' (
 �%�	 �)��*! +�� ��%,�-�� �� �.��/��� ��	
�0� 1�*�2�
� ���/��� ���� 3 �4$� � 5

�������.
78����� �� �9� �� :����� ;3<= ���/��� ����>��
? @9
A! ����	 5 �B?C� ���"� (D�� 5

@ � E�F C �%�� G� �)�H �I� ��-*�� JK L
�A�� ������� �����3 �	
�' �	 �$�.� �H
�)�H �.��/��� M�FI� ��N� � �)���O .��
=
�� ����>��
P� Q � JRH 5 E�S T�	 ��U	 � #�A�!

 ��	 � 5 �
=
�� ��	
�0� ��	 V8� ������� �����3 �	
�' &
� ���
� � &�?�� :�W�.�� ��
78����� X�9�O ��	
�
�� @82� Y
�
�� �<� �� V � Z�� �U?��� �� ��B[� L@\I� J�B]� . �

�^�� _,��� GA 9 `�ab B[V?�� ����?� c� JRH d����3. ����� �� � e<� f� ! 5 g@?�
 ��$ � &�-h� T�	 ������� �����3 �	
�' c
�O ���%	 ���@� B[_,��� �� ����>��
P�

�H@A�� �\ � i��
� �j � /k� � �H�8-�� (�l��m.
 �n@� �op C �������� ���/�� ��9�= ���>��
? @9
A! T�	 �%��	 5 ���@qI� e<� (

! J� T�	 �%/r � 5 �U?���V��@� sUt T�	 ���>��
P� e<� J
-�: T�	 �%��	 v�I� ���@�� (
 ���>��
? :��W��� Kmeans��<�l%! �	@� � �)�q�.�� ���� w�A� T�	 ���W�.� G� � � 5

 �9���� E�S � 5 �)/,��� �	 @Q%�� xy3 ���>��
P� e<z ����� ���y*! �� ���l��C� T�	 ����	
�3 �	
�' V��O � 1�*�2�����I� ��	
�0� e<� &U? �� ������� ���� .������8�� ���@ { !

 V-�z� ���� T�	 X���%��� |��-�C� ����	 :��W���3 �9>�
�� �$9@A3 ����I� ��	
�0� V��a�3
����I� ��	
�/��� L�}� . ��	
�0� �� �	
�' T�	 V4~ �%�RH ����8�� ���@��� �/��%2 �

����I� ������� e<� ��/��� D��8��� ���� T�	 ��� ! �8��8�� ���@�� JRH d����3 � 5 �������
��,�)%�� �/��%�� T�	 &
4a�� �By4�� ��	
�0� �
=@�� . e<� ���.! T�	 �%��	 �

��������>��
P� Kmeans-Based Convex Hull Triangulation clustering algorithm �3 X���4�?� �
)KBCHT.(

�\ � �
\ � ���	�H T�	 ���%9@=� +�� ���� �� L��/��� �� �9� �� T�	 i�%3 ������� ;4�?
 Z�� �l��W�� ������� �����3 ��	
�' 73 �� �.��/��� ��	
�0� 1�*�2� (���>��
]� e<�

O � �H�8-�� � :�/�C� �l��m ��$ � &�-h� T�	 c
�O� E�S � �H@A�� �\ � i��
� T�	 c

xy3 v�I� ���@�� (���W�.�� �^�.�� ����C� 1�@Q�� �	 @Q%�� . L��/��� e<� JK � ��2 �

�.H�%�� ����>��
P� �� T�	 �%���>��
? w
l! ;��t�.

www.manaraa.com

VII

DEDICATION

TTOO WWHHOOMM IITT MMAAYY CCOONNCCEERRNN

www.manaraa.com

VIII

ACKNOWLEDGMENTS

I am greatly grateful to my father, Bassam, and my mother, Hala, for all of their

love, support, patience, and encouragements.

I would like to express my sincere thanks to my advisor, Professor Hatem M.

Hamad, for his guidance and support during working on my thesis. His

involvements have greatly benefited both my thesis and myself.

My deep thanks go to Prof. Ibrahim Abuhaiba and Ass. Prof. Aiman Abusamra

for positively evaluated my proposal of this thesis. I am also thankful to Ass. Prof.

Wesam Ashour for his interest in the thesis. Not to forget my department of

computer engineering in the Islamic university of Gaza and my colleagues, I am

thankful to all of them.

I would like also to thank the reviewers of the 3rd International Conference on

Data Mining and Intelligent Information Technology (ICMIA 2011), which is

sponsored by the IEEE, the IEEE Macau section, and the IEEE Korea Council, for

the acceptance of my paper titled: Kmeans-Based Convex Hull Triangulation

Clustering Algorithm which is adapted from this thesis. They have processed a

large number of various papers from more than 25 countries and they have

selected the most innovative and well-written papers among them.

I owe several thanks and respect to my dear wife Dema, my daughter Layan

and my son Bassam. Their love and patience have encouraged me to finish my

work. My respect and regard go out to my brother Mohanned and my sisters

Shireen, Dalia and Sara.

I am also greatly indebted to the department of burns at Shifaa Hospital in Gaza

for the treatment of my son from a third-degree burns that hit him in 29/12/2010

at the age of 8 months where he remained for about a month in the hospital. I am

greatly grateful to all of the doctors and nurses in the department.

www.manaraa.com

IX

LIST OF FIGURES

1.1: Clustering example (a) dataset contains 14 objects. (b) Objects are grouped into

5 clusters. (adapted from: http://www.slideshare.net/pierluca.lanzi/ machine-learning-

and-data-mining-08-clustering-hierarchical last visit: July, 2011 ..2

1.2: Inter-cluster and Intra-cluster similarities of clusters ...3

2.1: Non-linear mapping by GTM, adapted from [87]. ... 13

3.1: Blue ‘*’s represent a partition from dataset enclosed by its convex hull and V’s

represent Vertices on convex hull and lines between vertices represent edges................... 20

3.2: (a) Example of a set of data points, red ‘*’s, that vertices of the convex hull, black

solid lines, are far away from a sparse cluster. (b) Shrinking result after eliminating the

vertices of convex hull. (c) The final result red ’*’s are in one cluster and black ‘+’s are in a

separated cluster .. 21

3.3: Solid line between points A and B. Dash lines are the projection of points to the line

AB ... 22

3.4: Toy example. (a) The moon dataset. (b) Result from the standard Kmeans where

blue ‘o’s are in one cluster and red ‘*’s are in another cluster and each of them are

enclosed by its convex hull. (c) The shrinking process. (d) The process of finding sub-

clusters. (e) The final result of our KBCHT algorithm .. 31

3.5: Artificial datasets. (a) DS1. (b) DS2. (c) DS3. (d) DS4 .. 32

3.6: Clustering Results of DS1: (a) our proposed KBCHT (using k=5). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=100, sigma=20 and

k=5). (d) Spectral clustering using Nystrom method (samples=100, sigma=20 and k=4)

 ... 36

3.7: Clustering Results of DS2: (a) our proposed KBCHT (using k=10). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=20 and

k=10). (d) Spectral clustering using Nystrom method (samples=400, sigma=20 and k=8)

 .. 37

3.8: Clustering Results of DS3: (a) our proposed KBCHT (using k=15). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=5 and

k=15). (d) Spectral clustering using Nystrom method (samples=400, sigma=5 and k=5)

 ... 38

3.9: Clustering Results of DS4: (a) our proposed KBCHT (using k=15). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=20

and k=15). (d) Spectral clustering using Nystrom method (samples=400, sigma=20 and

k=11). ... 39

3.10: Analysis of KBCHT when k=2 on DS3. (a) Result from the first phase. (b) The

Shrinking process. (c) the sub-clusters which is found by KBCHT (d) The final result of

KBCHT after merging sub-clusters and identifying noise and outliers 43

www.manaraa.com

X

3.11: Time cost (sec) of KBCHT three phases vs. varying number of k. red: first phase,

blue: second phase and black: third phase. (based on DS3) .. 44

3.12: Time cost (sec) of KBCHT vs. varying number of k. (based on DS3) 44

 3.13: Obtained number of initial partitions from the first phase vs. varying number of k.

(based on DS3) ... 44

3.14: Measuring the clustering accuracy (%) of KBCHT vs. varying number of k. (based

on DS3) ... 44

3.15: Artificial dataset DS5 .. 45

3.16: Time cost (sec) of KBCHT three phases vs. varying number of k. red: first phase,

blue: second phase and black: third phase. (based on DS5) .. 46

3.17: Time cost (sec) of KBCHT vs. varying number of k. (based on DS5) 46

 3.18: Obtained number of initial partitions from the first phase vs. varying number of k.

(based on DS5) ... 46

3.19: Measuring the clustering accuracy (%) of KBCHT vs. varying number of k. (based

on DS5) ... 46

4.1: The result of using GTM on Iris dataset (the three clusters are distinguished using

different color and symbol for each cluster) .. 52

4.2: Clustering accuracy results on real datasets ... 54

www.manaraa.com

XI

LIST OF TABLES

3.1: Comparison of the performance of our proposed KBCHT algorithm and existing

algorithms with time cost and clustering accuracy .. 41

4.1: The Descriptions of the used UCI datasets ... 50

4.2: Comparisons of the performance of our proposed KBCHT algorithm using GTM and

existing algorithms with time cost and clustering accuracy on real datasets 53

www.manaraa.com

1

Chapter 1

INTRODUCTION

A lot of data can be gathered from different fields but this data is useless

without proper analysis to obtain useful information. In this thesis, we focus on

one of the important techniques in data mining: Clustering.

1.1 Data Clustering

Data clustering is a method of grouping similar objects together. Thus the

similar objects are clustered in the same group and dissimilar objects are

clustered in different ones. An illustration example of clustering is shown in Fig

1.1. Data clustering is considered as an unsupervised learning technique in

which objects are grouped in unknown predefined clusters. On the contrary,

classification is a supervised learning in which objects are assigned to

predefined classes (clusters).

www.manaraa.com

2

(a)

(b)
Figure 1.1: Clustering example (a) dataset contains 14 objects. (b) Objects are

grouped into 5 clusters. (adapted from: http://www.slideshare.net/pierluca.lanzi/

machine-learning-and-data-mining-08-clustering-hierarchical last visit: July, 2011

1.1.1 Basic Concepts of Clustering

The problem of data clustering can be formulated as follows: given a dataset D

that contains n objects x1,x2,…,xn (data points, records, instances, patterns,

observations, items) and each data point is in a d-dimensional space, i.e. each

www.manaraa.com

3

data point has d dimensions (attributes, features, variables, components). This

can be expressed in a matrix format as:

� = ���� ������ ���⋮ ⋮
⋯ ��	⋯ ��	⋱ ⋮��� ��� ⋯ ��	

� (1.1)

Data clustering is based on the similarity or dissimilarity (distance)

measures between data points. Hence, these measures make the cluster analysis

meaningful [28]. The high quality of clustering is to obtain high intra-cluster

similarity and low inter-cluster similarity as shown in Fig. 1.2. In addition,

when we use the dissimilarity (distance) concept, the latter sentence becomes:

the high quality of clustering is to obtain low intra-cluster dissimilarity and

high inter-cluster dissimilarity.

Figure 1.2: Inter-cluster and Intra-cluster similarities of clusters.

1.2 Importance of Clustering

Data clustering is one of the main tasks of data mining [1] and pattern

recognition [2]. Moreover, it can be used in many applications such as:

1. Data compression [3].

2. Image analysis [5].

3. Bioinformatics [6].

4. Academics [9].

5. Search engines [79].

6. Wireless sensor networks [80].

www.manaraa.com

4

7. Intrusion detection [81].

8. Business planning [82].

1.3 Motivations

The Kmeans algorithm is considered as one of the top ten algorithms in data

mining [35]. A lot of researches and studies have been proposed due to its

simplicity and efficiency [55]. These efforts have focused on finding possible

solutions to one or more of the limitations that have been identified in page 10.

Kmeans with random initialization conditions need to be rerun many times

each with different conditions to find more suitable results [21]. Many

algorithms have been considered to provide better seeds so the Kmeans

algorithm is likely to converge to the global optimum like Minmax[43],

Kmeans++ [44] and [45]. Other solutions to the initial prototypes sensitivity

can be found in [46] where they defined new criterion functions for Kmeans

and they proposed three algorithms: weighted Kmeans, inverse weighted

Kmeans [52] and inverse exponential Kmeans [53]. Other improvements of

Kmeans focus on its efficiency where the complexity of Kmeans involves the

data set size, number of dimensions, number of clusters and the number of

iteration to be converged. There are many works to reduce the computational

load and make it faster such as [4], [47-49]. Asgharbeygi and Maleki [39]

proposed a new distance metric which is the geodesic distance to ensure

resistance to outliers. Several works have been introduced to extend the use of

means for numerical variables, thus Kmeans can deal with categorical variables

such as [50], [51].

JJ Sheu et. al. [61] proposed a new algorithm and they named it Intelligent

Kmeans (IKM) for deciding the proper number of clusters, choosing a better

initial prototypes and reducing the effect of outliers on the clustering result.

IKM divided the range of data points for each d dimensions into M regions

where M is a constant input number. One drawbacks of this method, is the

choice of grid size. If it is small, it will produce a large number of clusters and

vice versa.

www.manaraa.com

5

Many researchers have been involved in developing solutions to the Kmeans

and other clustering algorithms such as using neighborhood model [23], ant

colony [24], the principle of gravity [26], genetic algorithms [25], and

clustering method with constraints [27].

The problem in clustering is that we do not have prior information

knowledge about the given dataset. Moreover, the choice of input parameters

such as the number of clusters, number of nearest neighbors and other factors

in these algorithms make the clustering more challengeable topic. Thus any

incorrect choice of these parameters yields bad clustering results. Furthermore,

these algorithms suffer from unsatisfactory accuracy when the dataset contains

clusters with different complex shapes, densities, sizes, noise and outliers.

In this thesis we want to design a novel clustering algorithm that is able to

discover clusters with arbitrary complex shapes with presence of noise and

outliers without requiring a previous knowledge of the given domain. In our

approach we use the concept of convex hull [62] in which it is widely used in

image processing to represent the shapes. Furthermore, it has been recently

used in classification methods such as [64], [65]. Moreover, in [66] they

provided a method of representing on-line data streaming using a cost function

based on convex hull. In which they are concerned in representing the shape of

data stream as a collection of convex hulls. However, this method cannot

recover clusters correctly if the values of its input parameters are not set

correctly.

1.4 Thesis outlines

In Chapter 2, we introduce a general overview of data clustering

categorizations and algorithms. The ways of how we can construct a graph to

be used in the clustering algorithms have been mentioned too. Moreover, we

also explain and summarize some of the related works.

Our proposed algorithm is presented in details in Chapter 3. In which the

three phases of the proposed algorithm are explained. A simple toy example is

considered to be solved by our proposed algorithm. The simulation and results

www.manaraa.com

6

analysis based on our generated complex shaped datasets have been

accomplished in the last section of Chapter 3. Chapter 4 uses a topology

preserving mapping as a preprocessing to our approach and we have used 10

real datasets from UCI machine repository to show the effectiveness of our

proposed algorithm. Chapter 5 gives the conclusions and future research. We

also provide two appendices that illustrate how the data preparation is done and

the used distance metrics in the clustering algorithms.

www.manaraa.com

7

Chapter 2

RELATED LITERATURE REVIEWS

2.1 Overview

The clustering problems can be categorized into two main types: fuzzy

clustering and hard clustering. In fuzzy clustering, data points can belong to

more than one cluster with probabilities between 0 and 1 [10], [11] which

indicate the strength of the relationships between the data points and a

particular cluster. One of the most popular fuzzy clustering algorithms is fuzzy

c-mean algorithm [12], [13], [14]. In hard clustering, data points are divided

into distinct clusters, where each data point can belong to one and only one

cluster.

The hard clustering is divided into hierarchical and partitional algorithms.

Hierarchical algorithms create nested relationships of clusters which can be

represented as a tree structure called dendrogram [28]. Hierarchical algorithms

can be divided into agglomerative and divisive hierarchical algorithms. The

agglomerative hierarchical clustering starts with each data point in a single

cluster. Then it repeats merging the similar pairs of clusters until all of the data

points are in one cluster, such as complete linkage clustering [29] and single

www.manaraa.com

8

linkage clustering [30]. CURE [15], ROCK [16], BIRCH [17] and Chameleon

[18] are examples of this hierarchical algorithm. The divisive hierarchical

algorithm reverses the operations of agglomerative clustering, it starts with all

data points in one cluster and it repeats splitting large clusters into smaller ones

until each data point belongs to a single cluster such as DIANA clustering

algorithm [31].

In the contrary, Partitional clustering algorithm divides the dataset into a set

of disjoint clusters such as Kmeans [32], [42] PAM [31] and CLARA [31].

Moreover, the partitional algorithms have been considered more appropriate for

applications with large dataset, in which the construction of the dendrogram is

computationally expensive [1], [37]. One of the problems in applying

partitional methods is the choice of the number of clusters within the given

datasets where the determination of the number of clusters is one of the most

problematic issues in data clustering [7]. The partitional algorithms often use a

certain objective function and produce the desired clusters by optimizing this

objective function [36].

The clustering algorithms that are based on estimating the densities of data

points are known as density-based methods. One of the basic density based

clustering algorithm is DBSCAN [40]. It defines the density by counting the

number of data points in a region specified by a predefined radius known as

epsilon ɛ around the data point. If a data point has a number greater than or

equal to predefined minimum points known as MinPts, then this point is treated

as a core point. Non-core data points that do not have a core data point within

the predefined radius are treated as noise. Then the clusters are formed around

the core data points and are defined as a set of density-connected data points

that is maximal with respect to density reachability. DBSCAN may behave

poorly due its weak definition of data points’ densities and its globally

predefined parameters of ε and MinPts. There are many works that try to

improve the well known DBSCAN such as [41], [56-60].

www.manaraa.com

9

2.2 Similarity Graphs

Another type of clustering algorithms is based on the construction of similarity

graphs in which a given set of data points is transformed into vertices and

edges. The constructed graph can be used to obtain a single highly connected

graph that is then partitioned by edge cutting to obtain sub graphs [72], [74],

[68]. Basically, the kinds of graphs are ɛ-neighborhood, k-nearest neighbor and

fully connected graph [2], [70], [54].

The ɛ-neighborhood graph connects all data points whose pairwise

distances are smaller than a predefined threshold ɛ.

In the k-nearest neighbor graph the data point vi (vertex) is connected with

another data point in the dataset if it is in the k-nearest neighbors of vi where k

is a predefined parameter. This method lets the k-nearest neighbor produces a

directed graph. The undirected graph can be obtained from the k-nearest

neighbor by simply ignoring the directions of edges or by having a mutual k-

nearest neighbor graph in which two vertices are connected by an edge if and

only if these two vertices are among the k-nearest neighbors of each other.

The fully connected graph connects all data points that have a positive

similarity measurement with each other. The similarity measure can be

produced by using the Gaussian similarity function Sij=exp(-d���/2σ
2
) where dij

is the Euclidean distance between two data points xi and xj and the parameter σ

is also a user defined one that controls the width of neighborhoods.

2.3 Kmeans Algorithm

One of the most well-known unsupervised learning algorithms for clustering

datasets is Kmeans algorithm [31], [37]. The Kmeans clustering is the most

widely used due to its simplicity and efficiency in various fields [33], [38]. It is

also considered as the top ten algorithms in data mining [35]. The Kmeans

algorithm works as follows:

1. Select a set of initial k prototypes or means throughout a dataset, where

k is a user-defined parameter that represents the number of clusters in

the dataset.

www.manaraa.com

10

2. Assign each data point in a dataset to its nearest prototype m.

3. Update each prototype according to the average of data points assigned

to it.

4. Repeat step 2 and 3 until convergence.

The Kmeans algorithm depends on minimizing the sum of squared error

function which is very simple and can be easily implemented.

� = 1� � �‖� − ��‖�
�∈��

�
��� (2.1)

Where dataset D contains n data points x1,x2,…,xn such that each data point is d

dimensional vector in R
d
, and mi is the prototype of cluster Ci, and k is the

given number of clusters.

However, it has several drawbacks: the number of clusters k in a given

dataset should be known in advance, the result strongly depends on the initial

prototypes, the sensitivity to noise and outliers, the problem of dead prototypes

or empty clusters and the converge to local optima [34]. The Kmeans works for

globular shaped, similar size and density clusters.

2.4 CURE and Chameleon Algorithms

CURE [15] uses a constant number of well scattered representative data points

from all data points in the dataset to represent a cluster instead of selecting one

single centroid to represent a cluster in Kmeans. These are shrunk towards the

centroid of the cluster according to a user predefined shrinking factor. Then a

consecutive merging of the closest pair of the cluster’s representative points are

occurred until the predefined number of clusters is obtained. The selection of

the shrinking factor and the merging process make CURE ineffective with

complex datasets and they can cause false outliers [22].

Chameleon [18] uses a graph construction based on k-nearest neighbors, and

then it splits the graph into a set of small clusters using hMetis algorithm [19].

After that it merges these small clusters based on their similarity measure. It

has been used to find non-convex shaped clusters, however, it cannot handle

www.manaraa.com

11

noise and outliers and needs to set parameters correctly in order to obtain good

results [22], [20].

2.5 Affinity Propagation Algorithm

Another type of clustering algorithms is called Affinity Propagation [67] that

passes messages between data points to identify a set of exemplars (cluster

centers) and their corresponding clusters. In contrary of selecting an initial set

of cluster centers randomly and iteratively refines them such that the sum of

squared error is minimized as in Kmeans; the Affinity Propagation provides a

different approach that simultaneously considers all data points as candidate

exemplars. Then two types of messages are exchanged between data points.

The Responsibility messages are sent from data points to candidate exemplars

and indicate how strongly each data point is biased to the candidate exemplar

over other candidate exemplars. The Availability messages are sent from

candidate exemplars to data points and reflect evidence that each candidate

exemplar is available to be a cluster center of the data points. The Affinity

Propagation uses the median of similarities between data points as preferences

rather than the predetermined number of clusters.

2.6 Spectral Clustering Algorithm

Recently, the spectral clustering [70] has become one of the most popular

clustering algorithms which outperform the traditional algorithms such as

Kmeans. Furthermore, they are designed to handle non-convex shaped clusters.

However, spectral clustering suffers from heavily computations. The similarity

measure and graph cutting are also used in spectral clustering algorithms. The

core of the spectral clustering algorithms is to use the properties of

eigenvectors of Laplacian matrix for performing graph partitioning [69-76].

The Laplacian matrix is constructed by building an affinity graph matrix

with a similarity measure. The common similarity measure is to use the

Gaussian function Sij as stated previously for its simplicity. Hence, the

Laplacian matrix L is calculated as L=D-S where D is the diagonal matrix

www.manaraa.com

12

whose elements are the sum of all row elements of S. Then, the spectral

clustering computes a column matrix of the first k eigenvectors of L where k is

a predefined number of clusters. Thus it finds the clusters of mapped data

points that corresponding to the column matrix of eigenvectors by performing

Kmeans algorithm.

2.6.1 Spectral Clustering using Nystrom Method

W.-Y. Chen et. al. [76] proposed sparsification and Nystrom approaches to

address the computational difficulties and to improve the results. We compare

our algorithm with spectral clustering using Nystrom method because it needs

less computation and does not need the prespecified number of nearest

neighbors as in sparsification method. Nystrom method is a technique for

finding an approximate eigendecomposition. The spectral clustering using

Nystrom method uses randomly sample data points from the dataset to

approximate the similarity matrix of all data points in the dataset. Then it finds

the first k eigenvectors of the normalized Laplacian matrix of the Nystrom

method and performs Kmeans to cluster dataset.

2.7 Topology Preserving Mapping

A topographic mapping is a transformation of high dimensional data.

Furthermore, it preserves some structure in the data such as the points which

are mapped close to each other share some common properties while in

contrast the points which are mapped far from each other do not share a

common feature or property.

The Self-organizing map (SOM) [84] and the Generative topographic

mapping (GTM) [85] have been considered as very popular topology

preserving mapping techniques for data visualization and dimensionality

reduction. The GTM can be considered as a statistical alternative to the SOM

overcoming many of its limitations such as the absence of a cost function and

the lack of proof convergence [86].

www.manaraa.com

13

2.7.1 Self-organizing Map (SOM)

The Self-organizing Map (SOM) [84] is a type of artificial neural network that

is trained using unsupervised learning. SOM reduces dimensions of the given

datasets by producing a map of usually one or two dimensions. Furthermore,

SOM uses a neighborhood function to preserve the topological properties of the

input space.

The SOM consists of components called nodes or neurons in which they are

usually arranged in a hexagonal or rectangular grid. It first initializes the

weights associated with each neuron by assigning them small random values.

Then the SOM proceeds to three essential processes: competition, cooperation,

and adaptation [28].

2.7.2 Generative Topographic Mapping (GTM)

The GTM is a statistical model for modeling the probability density of data

points and finding non-linear mapping of high dimensional space onto low

dimensional space.

Figure 2.1: Non-linear mapping by GTM, adapted from [87].

As shown in Fig. 2.1, the basis of the GTM is to generate a grid of K latent

points z1,z2,…,zK in latent space. These latent points are mapped non-linearly

into the data space, which contains N data points xn (n=1,2,…,N), using a set of

M fixed basis Gaussian functions, such that,

www.manaraa.com

14

 � = Φ�"#$ (2.2)

Where yk denotes the mapped points in data space. The element Φ consists of

M fixed basis functions. W is M x D matrix containing weight parameters, and

D is the dimensionality of data space. A
Tr

 is a transpose of a matrix A.

The probability density between the mapped points yk and data points xn is

estimated by using a Gaussian noise distribution centered on yk with the noise

inverse variance β. This probability density p(xn|yk,W,β) is defined as :

)(��| � , $, ,) = - .�/01 �2 exp (− .� ‖�� − �‖�) (2.3)

The training step of GTM is done by optimizing its parameters using the

Expectation-Maximization (EM) algorithm [2], [28] which maximizes the

following log-likelihood:

ℒ($, ,) = argmax<,. � ln ?1@ �)(��| � , $, ,)A
���

BC
��� (2.4)

After convergence, we can visualize the data by projecting each data point

xi onto the latent space using one of the two ways:

• The Mode: the mode of posterior distribution: � EF	G = argmaxHI)(�|��) (2.5)

• The Mean: the mean of posterior distribution:

 � EGK� = � �
A

���)(�|��) (2.6)

Where)(�|�) is the corresponding posterior distribution in the latent

space for any given data point x in the data space and is defined as:

)(�|�) =)(�| � , $, ,))(�)∑)(�| �N, $, ,))(�N)A�O�� (2.7)

www.manaraa.com

15

Chapter 3

KBCHT: KMEANS-BASED CONVEX HULL

TRIANGULATION CLUSTERING

ALGORITHM

The problem of clustering datasets is that we have no prior knowledge

information about them. Thus the majority of existing clustering algorithms try

to solve it by introducing external input parameters which make these works

sensitive to their inputs. In this chapter we introduce Kmeans-Based Convex

Hull Triangulation clustering algorithm (KBCHT) a new clustering algorithm

that studies the given dataset to find the clusters. KBCHT algorithm is able to

detect clusters without pre-determination of clusters number in datasets which

contain complex non-convex shapes, different sizes, densities, noise and

outliers. Algorithm 3.1 provides a pseudo-code that describes the overall

procedures of KBCHT algorithm.

3.1 Proposed KBCHT Algorithm

KBCHT has three phases of operations. The first phase obtains initial groups

from running Kmeans algorithm just once, the second phase analyzes these

initial groups to get sub-clusters and the last one merges the sub-clusters to find

the final clusters in the dataset. As shown in Algorithm 3.1, KBCHT performs

Kmeans algorithm on the dataset x given the number of clusters k. The use of k

is just to run Kmeans as we will notice by further study of the effect of k in

www.manaraa.com

16

Section 3.3.2. Line 2 means that the first run of Kmeans algorithm despite its

bad initialization conditions has an initial set of clusters iCi where i is from 1 to

N the number of obtained clusters from Kmeans. The set iC with index i

contains data points from dataset x which belong to the initial cluster i. Lines 3

to 7 describe the process of how we analyze these initial clusters to obtain a set

of sub-clusters. In line 4, we construct a set of vertices which represents each

initial clusters iC. This set of vertices is obtained from the convex hull of each

initial clusters iC. The set iV handles these vertices which contains two indexes

i and j as shown in line 4. In which the index i indicates that these vertices

belong to the initial cluster i and the index j represents the vertex number of

convex hull of initial cluster i in a counterclockwise order. After obtaining the

vertices from the convex hull, these vertices need to be shrunk by adding new

vertices from the belonged initial clusters set iC. Thus we begin with vertices

drawn from a convex hull and finish with vertices of a polygon. The shrunk

vertices are handled in the set sV as shown in line 5 of Algorithm 3.1. Line 6

takes the shrunk vertices sV and processes them to obtain a set of sub-clusters

sC, the number of these sub-clusters S and the average distance between data

points of each of the sub-clusters in sC (sCaD) using the delaunay triangulation

[63] as will be explained later . The sub-clusters are formed by searching for

closed loops vertices in the sV set. The set sC has indexed from 1 to S in which

sCi contains data points of dataset x that belong to sub-cluster i. Some of these

sub-clusters could be merged together to form the final result of clusters C as

shown in line 8.

Algorithm 3.1: KBCHT

1 QRST� T�TUTVWTXR Y, �, TZ = [\,]Z = [\, Z = [\, T^ = [\,]^ = [\,]ZV� = [\, _ = 0 , a = 0

2 TZ, _ ← @�RV�](�, Y)

3 cde T = 1 Ud _

4 T^(T, f) ← Zd�]UeghU hd�iR�ℎgWW cde hWg]URe TZ�
5]^(T, Y) ←]ℎeT�Y^ReUR�(TZ� , T^(T, :))

6]Z, a,]ZV� ← cT�lagmZWg]URe](TZ� ,]^(T, :))

7 R�l_cde

8 Z ← �ReST�S(]Z, a,]ZV�)

9 oRUge� Z

10 R�l

www.manaraa.com

17

3.1.1 The First Phase: The use of standard Kmeans

KBCHT algorithm chooses to use the well known Kmeans algorithm as it is

first step because of its simplicity and widely use as one of the top ten data

mining algorithms [35].

The aim of our algorithm is to find clusters of arbitrary shapes and to detect

odd patterns that exist in the datasets which Kmeans is far away from detecting

them; Kmeans depends on assigning data points to their nearest mean thus the

final result of it comes out as spherical shapes. Thus we can benefit from its

first run with randomly thrown prototypes throughout the given dataset to catch

preliminary initial clusters that insures closely grouping sets. However,

Kmeans algorithm needs to be injected with k the number of clusters in the

dataset. Further investigation on the effect of k has been conducted in Section

3.3.2. The k or less than k, in case of dead prototypes, resultant partitions from

Kmeans could be processed and analyzed in a parallel fashion which speeds up

the processing time.

In this phase we are concerned with catching initial relatively related groups

and Kmeans algorithm gives relatively robust and good enough answers over a

wide variety of datasets as mentioned in [46]. Hence, we have decided to work

on the standard Kmeans algorithm.

Generally speaking, we can use any other method in which they offer

grouping such as any of the partitional clustering algorithms that are mentioned

in Chapter 1. Moreover, we can benefit from the researches that are focused on

the construction of similarity graphs of the given datasets as explained in

Chapter 2.

 Besides that, there are many developed researches related to overcome the

limitations of the standard Kmeans algorithms. Hence, the choice of one of

these developed researches to be as our first phase depends on what we want

and what we have. i.e, we want more accurate initial result despite the time it

could take or vice versa.

Some of these researches have aimed at identifying the initial centroids

locations. In [91] they avoided the initial random assignment of centroids using

www.manaraa.com

18

sub-merger strategy and [46] focused on the sensitivity to initial centroids

condition. Another research has focused on the number k of clusters such as in

[92] where they proposed a measure to select the number of clusters. Others

have tried to accelerate the Kmeans algorithm by avoiding many calculations

of distance based on partial distance strategy like in [4].

3.1.2 The Second Phase: The Shrinking

After catching the initial groups, we want the greatest benefit from them. How

we can analyze and represent them? We can go back to the topics of grid

clustering in the book [28] and the research as in [62] in which they divided the

group of data points into equal grids then trying to eliminate the grids that do

not contain sufficient number of points. But by using this, we have stuck under

the mercy of the user defined parameters. Hence, we have decided to use

widely used concept of representing shapes as in image processing which is the

convex hull mechanism.

As shown in lines 3 to 7 of Algorithm 3.1, this phase of KBCHT algorithm

operates on the set of initial clusters that are obtained from the first phase. Each

group of initial clusters is represented by its surrounding vertices on convex

hull and the data points inside this convex hull. Then these vertices of each

group are shrunk separately until we find the final sub-clusters. Procedure 3.1

in the next page describes the shrinking process in details.

Suppose we have one of the initial clusters obtained from the first phase of

KBCHT algorithm as shown in Fig. 3.1 (page 18). The blue ‘*’s in Fig. 3.1

represent the data points of the given dataset which can belong to one or

different final clusters of the dataset. The solid lines that are surrounding the

data points in Fig. 3.1 represent the convex hull of this portion of dataset. The

vertices from V1, V2 to V12 are the boundary data points drawn from the convex

hull in which V1 equals to the last vertex V12 and these vertices are in a

counterclockwise order. As in Fig.3.1 the blue ‘*’s are x data points in

Procedure 3.1 and the set Vs is the vertices of convex hull. In case of Fig. 3.1,

Vs is from V1 to V12.

www.manaraa.com

19

Line 5 in Procedure 3.1 computes the maximum length of edges between

each two consecutive vertices and stores it in MAX variable. KBCHT algorithm

does not use external parameter to guide the shrinking processing. It self

studies the given data points to decide when and how to make the shrink. This

maximum edge has the highest priority to be shrunk.

We can make the shrinking based on different criteria such as defining an

external parameter to be a threshold, instead of calculating our average, like in

many clustering algorithms that use threshold parameters. Thus by starting

shrinking the maximum edge length until the maximum one becomes less than

Procedure 3.1: Shrink Vertices

1 p�)gU:
2 ^]: ^ReUThR] dc hd�iR� ℎgWW

3 �: lVUV)dT�U] T�]TlR hd�iR� ℎgWW dc ^]

4 QRST�
5 qrs ← cT�l �V�T�g� WR�SUℎ dc RlSR] mRUtRR� ^]

6 r^u ← cT�l ViReVSR lT]UV�hR V�d�S dmfRhU] � T�hWd]Rl m ^]

7 tℎTWR qrs < r^u

8 �^] ← R�hWglR ^] ced� � V�l eRhd�]UeghU hd�iR� ℎgWW

9 qrs ← cT�l �V�T�g� WR�SUℎ dc RlSR] mRUtRR� �^]

10 r^u ← cT�l ViReVSR lT]UV�hR V�d�S dmfRhU] � T�hWd]Rl m �^]

11 ^] ← �^]

12 R�l_tℎTWR

13 ^ ← oRdelRe ^]]UVeUT�S ced� iReUR� mRWd�SR] Ud UℎR Wd�SR]U RlSR (eR]ReiR hdg�URehWdhYtT]R delRe)

14 tℎTWR qrs ≥ r^u xo Zd�iReSRl

15 y ← cT�l hWd]R]U)dT�U ced� � Ud UℎR WT�R mRUtRR� �̂ V�l �̂ V�l TU])edfRhUTd� cVWW] mRUtRR� �̂ V�l �̂ V�l eR]TlR] d� UℎR WRcU dc �̂ V�l �̂ V�l UℎR)Re)R�lThgWVe WT�R ced� y Ud UℎR WT�R mRUtRR� �̂ V�l �̂ ldR] ℎViR �d T�URe]RhUTd� tTUℎ dUℎRe RlSR] mRUtRR� iReUThR]
16 Tc]ghℎ V)dT�U y R�T]U]

17 Vll y Ud ^ mRUtRR� �̂ V�l �̂

18 RW]R

19 cWVS �̂ V�l �̂V])edhR]]Rl iReUThR]

20 R�l_Tc

21 qrs ← cT�l WR�SUℎ dc Wd�SR]U RlSR V�l TU] iReUThR] VeR �dU)edhR]]Rl

22 oRdelRe ^]UVeUT�S ced� iReUR� mRWd�SR] Ud UℎR Wd�SR]U RlSR V�l TU] iReUThR] VeR �dU)edhR]]Rl (eR]ReiR hdg�URehWdhYtT]R delRe)

23 R�l_tℎTWR

24 oRUge� ^

25 R�l

www.manaraa.com

20

the defined threshold. But as stated before, KBCHT algorithm does not like to

be with the clemency of external factors. Hence, we decide to compute the

average distance among data points that enclosed by the set of Vs. The vertices

Vs are excluded from computing this average to eliminate the effect of being

outliers. To compute the average distance among data points, we do not want to

consider the distances between each data point and every other data point in the

set; This will be computational expensive and does not reflect the actual data

structure of the given set of data points. Thus we construct the Delaunay

triangulation of the data points. Then the average distance AVG is the average

length of the triangles edges.

Now we have two variables MAX and AVG. However, for starting the

shrinking process the maximum edge length of convex hull MAX should be

greater than the average distance AVG. If it is not, this means that the vertices

of the convex hull are denser than the enclosed set of data points as shown in

Fig. 3.2. In this case, we identify a new set of vertices by reconstructing the

convex hull of the data points again without considering the previously

obtained vertices. These are shown in lines 7 to 12 of Procedure 3.1.

Figure 3.1: Blue ‘*’s represent a partition from dataset enclosed by its convex hull and

V’s represent Vertices on convex hull and lines between vertices represent edges.

50 100 150 200 250 300
200

250

300

350

400

450

V1

V2

V3

V4
V5

V6

V7

V8
V9

V10

V11

V12

x dim

y
 d

im

www.manaraa.com

21

After satisfying the above condition for starting the process of shrinking, we

reorder the vertices to begin from the vertex that belongs to the longest edge

length (line 13 of Procedure 3.1). But we have to reserve the order of vertices

in a counterclockwise order. Back to Fig. 3.1, the longest edge length is the

edge between two vertices V9 and V10. So we reorder the vertices such that V1

becomes V9 and V2 becomes V10 and so on.

 How to do the shrinking: At this stage, we have a set of vertices begins

from the vertex with the longest edge. We want to find another vertex from the

data points to be engaged between the first two vertices. To find this new

vertex, we have to find the closest data point to the line between the first two

(a)

(b) (C)

Figure 3.2: (a) Example of a set of data points, red ‘*’s, that vertices of the convex hull, black

solid lines, are far away from a sparse cluster. (b) Shrinking result after eliminating the

vertices of convex hull. (c) The final result red ’*’s are in one cluster and black ‘+’s are in a

separated cluster.

50 100 150 200 250 300 350
50

100

150

200

250

300

350

x dim

y
 d

im

100 150 200 250 300 350
50

100

150

200

250

300

350

x dim

y
 d

im

50 100 150 200 250 300 350
50

100

150

200

250

300

350

x dim

y
 d

im

www.manaraa.com

22

vertices of the set V and its projection lies on the line between these two

vertices. Consider Fig. 3.3 as an illustrated example for finding the closest

point to the line. In Fig. 3.3 we want to find the closest point to the line AB. To

do this we have to find the projection points (D1 and E1) on the line AB from

the tested points. Let A=(Ax,Ay), B=(Bx,By) and D=(Dx,Dy). Our goal is to find

the point D1=(D1x,D1y). Hence D1 lies on the line AB, thus it satisfies its line

equation and it can be found from: D1=A+u(B-A). To find u, the dot product of

the perpendicular line from D to line AB and line AB is 0. Thus u can be found

from the following equation [89]:

g = (�1� − r�)(Q� − r�) + {�1H − rH|{QH − rH|-(Q� − r�)� + {QH − rH|�0 (3.1)

To guarantee that D1 lies between A and B; the value of u should be between

[0, 1]. So, the points C and F do not be considered. Then the distance from the

point to the line is the distance from that point to its projection point on the

line.

We reserve the order of the vertices to be counterclockwise. Thus the picked

point that has to be a new vertex should also reside on the left side of the two

vertices in which the new vertex has to be engaged between them. To ensure

this, Back to Fig. 3.3 suppose we have two vertices A and B and we want to

examine that the data point D resides on the left side of the direction from A to

B. we compute the value of the following equation [90]:

Figure 3.3: Solid line between points A and B. Dash lines are the projection of points to

the line AB.

www.manaraa.com

23

 iVWgR = }r� Q� ��rH QH �H1 1 1 } (3.2)

Where |. | is the matrix determinant. If the sign of the value of equation (3.2) is

positive then the examined point is on the left side. As well as it is on the right

side if the sign is negative and on the straight line if it has a zero value. In fact,

the equation (3.2) reflects the area of the triangle of ABD.

However, we have started the shrinking with the vertices that lay on the

convex hull. Our approach in shrinking does not conserve the convexity of the

shrunk vertices shape. Thus we have to provide an additional condition for

shrinking which is shown in line 15 of Procedure 3.1. This condition says that

the perpendicular line from the candidate vertex to the line between the two

vertices in which their edge has to be shrunk should not intersect any of the

lines that are between two consecutive vertices. This condition has exceptions.

To be more obvious and as stated previously, the candidate vertex should be

between V1 and V2 vertices thus if the candidate vertex is already an existing

vertex, we violate the previous condition if this candidate vertex is V3 or Vlast-1

(vertex that resides before the last one directly). Also, it should be violated if

there is only one intersection and this intersection point is equal to the vertex V1

or V2. While the process of shrinking is going on, some vertices have to be

released from the vertices set if a specific vertex has the same previous and

next vertex. Hence, this vertex has to be released if its distance to next vertex is

greater than the AVG value. The released vertices should be processed in the

last phase of KBCHT algorithm. The sharp eyed readers may notice that the

above condition of releasing vertices may be violated even though they should

be released. This situation happens when we want to release a vertex that

resides far away from a group of dense data points but its distance to next

vertex is less than the overall average distance AVG. In this case, we add one

more examine condition in which we compute the length of the two adjacent

edges of this vertex. If both of them are greater than the overall average

distance AVG and they have no close candidate vertices to be added in the set

of V. Thus we guarantee to release this vertex from the set V.

www.manaraa.com

24

Line 17 of procedure 3.1 says: “All of the above mentioned conditions have

been satisfied”. Thus we add the candidate vertex to be one of the vertices in

the set V between vertex V1 and V2. If no such a candidate vertex in which it

violates the above conditions, the two vertices V1 and V2 have been flagged to

be processed. A new value of variable MAX should be recalculated as in line 21

of Procedure 3.1. But at this time the vertices that have a maximum edge length

should not be flagged as processed. If so, find the next longest edge length until

their vertices are not flagged. Then the set V is reordered again starting from

the vertex that belongs to the longest edge length and their vertices are not

flagged as processed. We repeat this process of shrinking again and again until

the MAX value becomes less than the average distance AVG or all vertices in

the set V have been flagged as processed.

What to do with the shrunk vertices: the last operation of the second

phase of KBCHT algorithm is to refine the shrunk vertices and to extract useful

information from the set of these vertices by finding the groups of sub-clusters

entire the given dataset. Procedure 3.2 says how to find sub-clusters. After

shrinking the vertices that obtained from the first phase of KBCHT algorithm

in which they reside on the boundary of the convex hull of each of the resultant

initial groups from the first phase. At this stage, the shrunk vertices are on the

boundary of initial group of data points where this boundary forms a general

polygon shape.

KBCHT algorithm calls the Procedure 3.2 in its line 6 as shown in

Algorithm 3.1. Procedure 3.2 takes two inputs: V which is the resultant shrunk

vertices and x which is the set of data points that enclosed by V. This x is a part

of the overall given dataset. We want to distinguish these vertices in the set V

thus each group of connected vertices belongs to a separate sub-cluster. We

define the set L that has a number of entries equal to the number of the given

vertices in V. Initially, all the vertices are assigned a label value of 0 such that

Li=0 ∀ i∈{1,…,len} where len is the number of shrunk vertices. For example if

L5 has a label value equals to 1, then this means that the V5 of the set V is

www.manaraa.com

25

assigned to the sub-cluster of label 1. Thus L handles the labels of sub-clusters

that each of vertices in V belongs to.

In line 9 of Procedure 3.2 we define a variable count which it is initially set

to be 1 and is incremented automatically by one when the algorithm detects a

new sub-cluster. So, count represents the labels of sub-clusters that the vertices

belong to. Procedure 3.2 enters a loop that begins from line 10 and ends up at

line 22. These lines are the core of this Procedure in which we define two

pointers i and j such that we fix i to point to a specific vertex in the set V and

then the pointer j investigates each of the following vertices after that vertex

which is pointed by i. When the pointer j reaches the last vertex in the set V, we

move the pointer i one step forward to point to the next vertex and the pointer j

Procedure 3.2: Find sub clusters

1 p�)gU:
2 ^: aℎeg�Y ^ReUThR] dc mdelRe)dW Sd�

3 �: lVUV)dT�U] R�hWd]Rl m ^

4 QRST�
5 WR� ← �g�mRe dc iReUThR] T� ^

6 cde T = 1 Ud WR�

7 ~� ← 0

8 R�l_cde

9 hdg�U ← 1
10 cde T = 1 Ud WR� − 1

11 Tc ~� == 0

12 cde f = T + 1 Ud WR�

13 lTcc ← lT]UV�hR mRUtRR� �̂ V�l �̂
14 Tc lTcc == 0

15 cde Y = T Ud f

16 ~� ← hdg�U

17 R�l_cde

18 hdg�U ← hdg�U + 1

19 R�l_Tc

20 R�l_cde

21 R�l_Tc

22 R�l_cde

23 cde T = 1 Ud hdg�U − 1

24]Z� ← cT�l dmfRhU] dc � T�]TlR ^ tTUℎ WVmRW ~�
25 R�l_cde

26 cde T = 1 Ud hdg�U − 1

27]ZV�� ← hVWhgWVUR UℎR ViReVSR lT]UV�hR tTUℎT� UℎR]gm hWg]URe]Z�
28 R�l_cde

29 oRUge�]Z, hdg�U − 1 V�l]ZV��
30 R�l

www.manaraa.com

26

restarts and repeats its mission. This task will be repeated until i reaches the

len-1 vertex which is one position before the last vertex. Line 11 tests if the

corresponded vertex has never assigned to sub-cluster yet. If so, the procedure

enters into the loop of the pointer j. In line 13 of Procedure 3.2 we check if the

vertex pointed by i (Vi) and the vertex pointed by j (Vj) are the same. If they are

identical vertices, then we obtained a closed connection of vertices which also

means that we catch one of the sub-clusters in the dataset. Line 16 gives the

sub-cluster’s label to the set L starting from its index of i through j. After that

we increment the label identified by count by 1. This process will be repeated

until we catch all of the sub-clusters in the given dataset. Before line 23 of

Procedure 3.2, we have groups of vertices each belongs to different sub-

clusters; these groups represent the boundary of the data points of each sub-

cluster. Thus the lines from 23 to 25 find the data points themselves in which

they are enclosed by each of the obtained closed connection of vertices. Hence,

the set sC in Procedure 3.2 handles the data points of each sub-cluster in the

dataset and it has an index starts from 1 to the number of obtained sub-clusters

where each index handles the tightly data points that belong to a specific sub-

cluster. Finally, for each of the obtained sub-clusters we compute the average

distance between data points within each of them as explained in Section 3.1.2

and store these average distances in the group of sCaD as shown in lines 26 to

28.

3.1.3 The Third Phase: Merging sub-clusters

Procedure 3.3 shows the steps of the last phase of our KBCHT algorithm which

is merging the obtained sub-clusters for finding the final set of clusters in the

studied dataset. The set sC is defined to be a group of sub-clusters of the

dataset. In addition, S is the number of these sub-clusters. Hence,

sC={sC1,sC2,…,sCS} in which each of the sub-cluster sCi contains the data

points that belong to this sub-cluster. The sCaD={sCaD1,sCaD2,…,sCaDS}

group handles the average distance within each of the sub-clusters thus sCaD1

www.manaraa.com

27

indicates the average distance within sub-cluster sC1. We also have a group of

clusters C={C1,C2,…} which is the output of this phase that contains a number

of the resultant clusters of the given dataset in which it is self identified.

Moreover, C is also the final result of KBCHT after considering released

Procedure 3.3: Merging sub-clusters

1 p�)gU:
2]Z: Sedg) dc]gm hWg]URe]

3 a: _g�mRe dc]gm hWg]URe]

4]ZV�: Sedg) dc hVWhgWVURl ViReVSR lT]UV�hR] tTUℎT� RVhℎ dc UℎR]gm hWg]URe]

5 QRST�
6 Z� ←]Z�

7 oR�diR R�UeTR] dc WVmRW 1 ced�]Z Sedg)

8 V�� ←]ZV��

9 T ← 1

10 f ← 2

11 tℎTWR]Z Sedg) T] �dU R�)U

12 tℎTWR f ≤ a

13 Tc]Z ldR] �dU hd�UVT� WVmWR f

14 f ← f + 1

15 hd�UT�gR

16 R�l_Tc

17 lm2h ← hd�)gUR UℎR lT]UV�hR mRUtRR� Utd]gm hWg]URe] Z� V�l]Z�

18 Tc lm2h < V��
19 Vll]Z�Ud Z�
20 oR�diR R�UeTR] dc WVmRW f ced�]Z Sedg)

21 Tc]Z T] R�)U

22 meRVY

23 R�l_Tc

24 V�� ← eRhd�)gUR ViReVSR lT]UV�hR V�d�S dmfRhU] T�]gm hWg]URe Z�
25 f ← �T�T�g� iVWgR dc WVmRW] T�]Z

26 RW]R

27 f ← f + 1

28 R�l_Tc

29 R�l_tℎTWR

30 Tc]Z T] R�)U

31 meRVY

32 R�l_Tc

33 T ← T + 1

34 cW ← cT�l cTe]U WVmRW T�]Z

35 r))R�l]Z�� Ud Z�
36 oR�diR R�UeTR] dc WVmRW cW ced�]Z Sedg)

37 V�� ←]ZV���
38 f ← cW + 1

39 R�l_tℎTWR

40 oRUge� Z

41 R�l

www.manaraa.com

28

vertices as mentioned previously. These released vertices are categorized into

two groups. One of them identifies them as noise and outliers, and the other

one assigns them back to their corresponding clusters.

 First we add the first item of the group sC to the group C as shown in line 6

of Procedure 3.3. Then in line 7 we remove the first sub-cluster from the group

sC. Thus we want to pick and remove sub-clusters from sC and add them to the

group of C to one of its items or append them to be a new item or cluster in the

group C. Hence, we want the group sC to be empty for having the clusters in C.

Now we have to calculate the average distance between data points in sub

cluster C1 by assigning it the value of sCaD1 because at this stage the group C1

is the same as sC1.

As stated previously, for computing the average distance of a given group of

data points we construct its Delaunay triangulation to have geometry of

triangles. Thus the average distance is the average length of edges of the

triangles. The average distance of sub-cluster C1 is stored in aD1 of the group

aD. The two pointers i, and j in Procedure 3.3 deal with the two groups C and

sC respectively. We trace all the sub-clusters in sC thus we have to decide if

one of these sub-clusters can be added to the picked item from the group C. So,

we have sub-clusters that are merged together to form the final clusters. For

deciding to merge or not, we compute the distance between the sub-cluster Ci

and each of the remaining sub-clusters in the group sC as stated in line 13 of

Procedure 3.3. We calculate the distance between two groups of data points by

considering the distance between the two closest data points in which each of

these two data points belongs to different group. Other methods of measuring

distance between clusters can be found in [28]. If the distance between the

cluster Ci and one of the sub-clusters in sC (db2c) is less than the average

distance within the Ci, we add this sub-cluster of sC to the cluster Ci thus the

cluster Ci grows. In case of finding a candidate sub-cluster from the group sC

to be merged with one of the clusters in the group C, we remove this sub-

cluster from the group sC and check if sC becomes empty to stop and get out

from the Procedure 3.3 as shown in lines 21 to 23 and lines from 30 to 32. In

www.manaraa.com

29

line 24 we have two merged sub-clusters. Hence, we recomputed the average

distance within the grown cluster to reflect the actual average distance in it and

to accept new merged sub-clusters. Line 25 reassigns a value for the pointer j to

point to the previous sub-clusters in sC that does not meet the criteria of

merging with old Ci. Because the characteristic of Ci before merging is differ

than it after merging, thus we can have additional sub-clusters in sC in which

they could be merged with the new formed cluster.

When we reach line 33 of Procedure 3.3, this means that we have already

caught one of the clusters of the given dataset from merging process. As a

consequence, we have to look forward to finding other clusters in the given

dataset. Thus we increment the pointer i by one to point the next location in the

group C in which we want to find another cluster. Since we remove each of

merged sub-clusters from the group sC, its labels will not be in a regular order.

Hence, in line 34 we find the first label that exists in the group sC and assign it

to the variable fl. Now the first sub-cluster in the sC is appended to a new index

position in the group of C. Then it has been removed from the sC. The average

distance within the new inserted sub-cluster in C has assigned the value from

its corresponding group of sCaD. We assign a new value for the pointer j which

points to sub-clusters in the group sC as in line 38. We repeat the above steps

until the group sC becomes empty which means that we have obtained the

desired clusters from the given dataset in the group C. To make C as a final

result of our algorithm, we should back to process the released vertices from

the shrinking phase; this is done by assigning them to their corresponding

clusters in C. This is done by telling each cluster in C to pick the similar

vertices to it which occurs when the distance from the cluster and the tested

vertices is less than the average distance within this cluster. The remaining

vertices are considered to be odd patterns in the entire dataset and we mark

them as noise and outliers. Hence, we find the final results of clusters in the

given dataset in a completely unsupervised manner.

www.manaraa.com

30

3.2 A Toy example: Moon dataset

For illustration purposes, we consider the following example in Fig. 3.4 to be

solved by our KBCHT algorithm.

In this dataset we have two moons distributed as shown in Fig. 3.4(a).

KBCHT performs the standard Kmeans for obtaining the initial groups of

clusters to be processed. Fig. 3.4(b) shows the result from the first phase of

KBCHT algorithm in which we have two groups of initial clusters, one of them

is with blue ‘o’s data points and the second one is with red ‘*’s data points.

Now we can process these two groups in a parallel fashion. One thread picks

the blue group and the second thread picks the red one. Hence, KBCHT

algorithm executes its second phase in which KBCHT constructs the convex

hull of the two groups as shown in Fig. 3.4(b), the closed set of solid black

lines. At this step we have identified the vertices that represent each of the

groups which reside on the drawn convex hull.

Fig. 3.4(c) visualizes the process of shrinking these vertices which is the

output result of the Procedure 3.1. It has been noticed that each of the two

groups has two connected set of vertices and the shrunk vertices forms a

general polygon shape in which KBCHT can detect convex shape as well as

non-convex shape clusters. Procedure 3.2 has triggered on the result shown in

Fig. 3.4(c) to find the set of sub-clusters sC for this moon dataset.

Fig. 3.4(d) shows four sub-clusters in which sC={sC1,sC2,sC3,sC4} such

that sC1 is the green ‘.’s data points, sC2 is the black ‘.’s data points, sC3 is the

data points with blue ‘.’s and sC4 is the data points with red ‘.’s. KBCHT

algorithm checks these sub-clusters for merging process. Procedure 3.3 works

on the result shown in Fig. 3.4(d) to find final clusters C. At the beginning, the

group C={sC1} that is C1 is equal to sC1 and sC becomes {sC2,sC3,sC4} after

removing sC1 from it. KBCHT searches for one or more of the sub-clusters in

sC to be merged with C1 according to Procedure 3.3. KBCHT finds that sC3

should be merged with C1 thus C={sC1+ sC3} where C1 is the two sub-clusters

sC1 and sC3 together. Then by the next iteration C={sC1+ sC3, sC2} where C2 is

sC2 and sC={ sC4}. According to Procedure 3.3 sC2 should be merged with sC4

www.manaraa.com

31

thus C={sC1+ sC3, sC2+ sC4} and sC4 is removed from sC to be an empty

group. Hence, we obtain the two clusters of the moon dataset. Fig. 3.4(e) shows

the final of clusters that obtained by KBCHT algorithm.

(a)

(b) (C)

(d) (e)

Figure 3.4: Toy example. (a) The moon dataset. (b) Result from the standard Kmeans where

blue ‘o’s are in one cluster and red ‘*’s are in another cluster and each of them are enclosed

by its convex hull. (c) The shrinking process. (d) The process of finding sub-clusters. (e) The

final result of our KBCHT algorithm.

280 290 300 310 320 330 340 350 360 370 380
220

240

260

280

300

320

340

360

380

x dim

y
 d

im

280 290 300 310 320 330 340 350 360 370 380
220

240

260

280

300

320

340

360

380

x dim

y
 d

im

280 290 300 310 320 330 340 350 360 370 380
220

240

260

280

300

320

340

360

380

x dim

y
 d

im

280 290 300 310 320 330 340 350 360 370 380
220

240

260

280

300

320

340

360

380

x dim

y
 d

im

280 290 300 310 320 330 340 350 360 370 380
220

240

260

280

300

320

340

360

380

x dim

y
 d

im

www.manaraa.com

32

3.3 Simulation and Results

3.3.1 Datasets results

We illustrate the strength of the KBCHT algorithm in a number of artificial two

dimensional datasets, since the results can easily be verified visually. We

generate four types of datasets DS1, DS2, DS3 and DS4 with 350, 1000, 2000,

and 6000 data points respectively as shown in Fig. 3.5. Now, our purpose is to

verify that KBCHT algorithm should be able to detect the clusters in these

datasets, which can be differentiated by eyes, successfully. DS1 is considered

to be a simple dataset that contains four well separated clusters, but the others

(a)

(b)

(c)

(d)

 Figure 3.5: Artificial datasets. (a) DS1. (b) DS2. (c) DS3. (d) DS4.

0 100 200 300 400 500 600 700
50

100

150

200

250

300

350

400

450

x dim

y
 d

im

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

x dim

y
 d

im

www.manaraa.com

33

contain clusters with complex non-convex shapes, different sizes, densities,

noise and outliers. We compare our algorithm with the Affinity Propagation

[67] algorithm in which messages are exchanged between data points until the

final clusters are found, because it does not need to be rerun many times each

with different initial conditions and does not require to input the number k of

clusters. Also, we compare it with one of the recently spectral clustering

algorithms because they are designed to handle non-convex shaped clusters and

solve the problem of expensive computations of them which is the spectral

clustering using Nystrom method [76].

As stated previously, we have to do the clustering task with no prior

information knowledge about the given dataset and this is the goal of our

proposed KBCHT algorithm. As a consequence, we have treated the given

datasets as closed black boxes. For this reason, we have used the same value of

k, in case of our proposed KBCHT algorithm and Spectral clustering using

Nystrom algorithm, to figure out the output with no prior information. In

addition, as we have generated these four artificial datasets, we do further step

in assigning the true value of k to the Spectral clustering using Nystrom

algorithm

DS1: This dataset contains 350 data points distributed into 4 well separated

clusters. However, it is suitable to find its clusters using the standard Kmeans.

But when we perform our KBCHT its first phase does not detect the four

clusters correctly. We deal with the given dataset as black boxes that mean we

do not have a prior knowledge about how many clusters exist or how they are

distributed. Thus we roughly choose k=5 and our KBCHT correctly identifies

the four clusters as shown in Fig. 3.6(a). Fig. 3.6(b) shows the result of

clustering using Affinity Propagation in which it does not use any input

parameters. However, it does not correctly detect the number of clusters. It has a

result of 11 clusters. Since the spectral clustering using Nystrom method has

two inputs: sigma and the number of clusters which are user defined. We use a

sigma to equal 20 and use the same value of k=5 for the reason stated above.

Even though this is a simple dataset Fig. 3.6(c) shows the weakness of the

www.manaraa.com

34

spectral clustering when its parameters are not identified correctly. In which it

has a result of five clusters where it wrongly splits one of the clusters into two.

To be more honest with the used spectral clustering, we rerun it with k=4 and

we obtain a result that correctly identifies the four clusters as shown in Fig.

3.6(d).

DS2: This dataset contains 1000 data points distributed into 8 complex shaped

clusters and also with present noise and outliers. Fig. 3.7 (a) shows the

effectiveness of our KBCHT algorithm in identifying the true 8 clusters

however we roughly choose k=10. The noise and outliers are correctly marked

as the black ‘+’s in Fig. 3.7(a). This is due to how we measure the Delaunay

triangulation average AVG within the initial group, where we exclude the

convex hull vertices from the computation of the AVG which eliminates the

effect of outliers. The Affinity Propagation detects 20 clusters as shown in Fig.

3.7(b). For the spectral clustering using Nystrom method with sampling equals

to 400 and we set sigma=20 and also we run it one time with k=10 as chosen for

our KBCHT and another time using correct number of clusters k=8. Fig. 3.7(c)

and Fig. 3.7(d) improves that our proposed KBCHT outperforms it in case of

cluster quality.

DS3: This dataset contains 2000 data points distributed into 5 complex shaped

clusters and also with present noise and outliers. Fig. 3.8 (a) shows the strength

of our KBCHT algorithm in identifying 5 clusters correctly. However, we

roughly choose k=15. The noise and outliers are correctly marked as the black

‘+’s in Fig. 3.8(a). In fact, the shrinking phase of KBCHT algorithm traverses

all candidate vertices that could be engaged into the representative boundary of

the given initial groups, this is due to the high priority given to the longest edge

between two consecutive vertices to be shrunk according to the natural of the

given initial group that it is reflected by the calculated delaunay triangulation

average inside this group. The Affinity Propagation detects 28 clusters as shown

in Fig. 3.8(b). We proceed as above in selecting sampling of 400 and sigma=20

for the spectral clustering using Nystrom method but it triggers an error on the

value of sigma thus we tuned it to be equal to 5 and also we run it one time with

www.manaraa.com

35

k=15 as chosen for our KBCHT and another time using the correct number of

clusters k=5. Fig. 3.8(c) shows that it does not fully detect the cluster correctly

but in Fig. 3.8(d) the spectral clustering shows that it handles two clusters

correctly but without identifying noise and outliers.

DS4: This dataset contains 6000 data points distributed into 11 complex shaped

clusters and also with presence of noise and outliers. Fig. 3.9 (a) shows that our

KBCHT algorithm finds all of the 11 clusters correctly. However, we roughly

choose k=15. The noise and outliers are correctly marked as the black ‘+’s in

Fig. 3.9(a). The Affinity Propagation detects 53 clusters as shown in Fig.

3.9(b). The spectral clustering using Nystrom method with sampling equals to

400 and sigma=5; the result shown in Fig. 3.9(c) with k=15 as chosen for our

KBCHT and when using the correct number of clusters k=11 we obtain clusters

as shown in Fig. 3.9(d).

In the next Section, we do further analysis of the given results in which we

measure the obtained clustering quality rather than subjectively evaluating the

results.

www.manaraa.com

36

(a) (b)

(c) (d)

Figure 3.6: Clustering Results of DS1: (a) our proposed KBCHT (using k=5). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=100, sigma=20 and k=5).

(d) Spectral clustering using Nystrom method (samples=100, sigma=20 and k=4).

0 100 200 300 400 500 600 700
50

100

150

200

250

300

350

400

450

x dim

y
 d

im

0 100 200 300 400 500 600 700
50

100

150

200

250

300

350

400

450

x dim

y
 d

im

0 100 200 300 400 500 600 700
50

100

150

200

250

300

350

400

450

x dim

y
 d

im

0 100 200 300 400 500 600 700
50

100

150

200

250

300

350

400

450

x dim

y
 d

im

www.manaraa.com

37

(a) (b)

(c) (d)

Figure 3.7: Clustering Results of DS2: (a) our proposed KBCHT (using k=10). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=20 and k=10).

(d) Spectral clustering using Nystrom method (samples=400, sigma=20 and k=8).

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

x dim

y
 d

im

www.manaraa.com

38

(a) (b)

(c) (d)

Figure 3.8: Clustering Results of DS3: (a) our proposed KBCHT (using k=15). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=5 and k=15).

(d) Spectral clustering using Nystrom method (samples=400, sigma=5 and k=5).

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

www.manaraa.com

39

(a) (b)

(c) (d)

Figure 3.9: Clustering Results of DS4: (a) our proposed KBCHT (using k=15). (b) Affinity

Propagation. (c) Spectral clustering using Nystrom method (samples=400, sigma=20 and k=15).

(d) Spectral clustering using Nystrom method (samples=400, sigma=20 and k=11).

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

x dim

y
 d

im

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

x dim

y
 d

im

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

x dim

y
 d

im

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

x dim

y
 d

im

www.manaraa.com

40

3.3.2 Performance Analysis

In order to prove the effectiveness and the strength of our proposed KBCHT

algorithm, we construct experiments for measuring the performance in case of

time cost and clustering accuracy according to the visual results shown in

Section 3.3.1. Table 3.1 shows the comparison of the performance of our

proposed KBCHT algorithm and the used clustering algorithms in which we

have been used in Section 3.3.1 for each of the results that obtained visually in

previous section. We measure the time that it takes for completing its mission

of clustering in seconds. Furthermore, it is important to measure how they are

accurate in identifying the final results which is more important. For measuring

the clustering accuracy, we follow the technique used in [77] and [76] to

evaluate the quality of the resultant clusters and we use the following equation:

rhhgeVh = ∑ �{ � , �V)(h�)|���� � (3.3)

Where n is the number of data points in the given dataset, yi and ci are the true

cluster label and the obtained cluster label respectively. The delta function �(, h) equals 1 if y=c and equals 0 otherwise. To measure the accuracy, we

need a permutation function that maps each obtained cluster label to a true

cluster label. Moreover, for achieving the optimal matching the Hungarian

algorithm [78] is used.

As shown in Table 3.1, our proposed KBCHT algorithm has a clustering

accuracy as high as 100% for all of the datasets that have been used. For DS1,

we have also an accuracy of 100% for the spectral clustering using Nystrom

method but when we use the exact number of clusters that included in DS1

even in this case our proposed KBCHT outperforms it in the execution time.

But when using the same value of k, our algorithm has the superiority in both

the time cost and the clustering accuracy. To find the final results of clusters in

DS1, our KBCHT takes 0.12 sec, 0.03 sec and 0.12 sec for the first, the second

and the third of its phase respectively.

For the DS2, our proposed KBCHT algorithm executes the first phase in 0.3

sec, phase two in 1.03 sec and the last phase in 0.87 sec. Hence the overall time

www.manaraa.com

41

cost is 2.2 sec as shown in Table 1. Our KBCHT takes 1.27 sec, 0.92 sec and

5.11 sec for its three phases respectively for the DS3. And for the DS4 it spends

the most of its time in executing the third phase in which it takes 32.55 sec, the

first and the second phases are executed in 5.1 sec and 10.84 sec respectively.

However, for the DS4 our algorithm takes much time than the spectral

clustering algorithm, the overall performance of KBCHT improves the

clustering results in case of the quality of the results compared with this small

gap reported in the execution time.

Table 3.1: Comparison of the performance of our proposed KBCHT algorithm

and existing algorithms with time cost and clustering accuracy.

Dataset Algorithm
Time Cost

(sec)

Clustering

Accuracy (%)

DS1

Proposed KBCHT (k=5) 0.27 100

Affinity Propagation 7.58 39.62

Spectral clustering using Nystrom

(samples=100,sigma=20,k=5)
0.31 89.94

Spectral clustering using Nystrom

(samples=100,sigma=20,k=4)
0.29 100

DS2

Proposed KBCHT (k=10) 2.20 100

Affinity Propagation 21.38 53.06

Spectral clustering using Nystrom

(samples=400,sigma=20,k=10)
3.19 52.02

Spectral clustering using Nystrom

(samples=400,sigma=20,k=8)
2.97 60.76

DS3

Proposed KBCHT (k=15) 7.30 100

Affinity Propagation 41.78 23.69

Spectral clustering using Nystrom

(samples=400,sigma=5,k=15)
10.39 44.95

Spectral clustering using Nystrom

(samples=400,sigma=5,k=5)
10.27 91.84

DS4

Proposed KBCHT (k=15) 48.49 100

Affinity Propagation 453.98 25.62

Spectral clustering using Nystrom

(samples=400,sigma=20,k=15)
43.23 65.12

Spectral clustering using Nystrom

(samples=400,sigma=20,k=11)
43.71 66.21

www.manaraa.com

42

Does the choice of k in our proposed algorithm affect the performance: As

we have mentioned in the previous section, the proposed KBCHT does not

require prior knowledge information for finding the final results of clusters in a

given dataset. It makes self analysis to discover the clusters. But how it

performs when changing the value of k? For this purpose we construct

experiments on the DS3 and we choose k to be from 2 to 70. For selecting k=2,

the DS3 has been partitioned into two initial groups from the first phase as

shown in Fig. 3.10(a). In this case all the overhead will be concentrated on the

second phase of KBCHT in which the shrinking process investigates more

complex shaped group and more vertices to find a set of shrunk vertices.

KBCHT does not accept to have only one partition from the first phase. The

two partitions of first phase are illustrated in Fig. 3.10 (a) that takes 0.34 sec.

Fig. 3.10(b) and 3.10(c) show the second phase operations of shrinking vertices

and finding sub-clusters (8 sub-clusters) respectively. In which the effect of

noise and outliers are eliminated as shown in Fig. 3.10(c). The second phase

takes 18.13 sec to be accomplished. Fig. 3.10(d) shows the final result of

KBCHT after merging phase and detecting noise and outliers which it takes

2.75 sec.

Fig. 3.11 shows how each of the three phases of our KBCHT algorithm

performs with different values of k. It has been shown that the most consuming

phase is the third one with the increasing values of k. Since the number of

comparisons increased between pairs of sub-clusters. As increasing the value of

k, the second phase execution time drops dramatically. Because as the group

under shrinking process becomes smaller, the complexity of the group

decreases thus it can be handled faster. The most challenging case on shrinking

of DS3 is when k=2 as shown in Fig. 3.10(b) in which each group has long

embedded boundaries to be investigated by the shrinking process. KBCHT was

proud to face this challenge to prove its efficiency and strength in handling this

type of dataset. In Fig. 3.12 we show the overall time cost of the KBCHT

algorithm when varying the number of k. As the value of k increased the overall

time cost has increased too. The best value of k is when it equals 10. At this

www.manaraa.com

43

value of k, the execution time spends less time among other values and equals

to 6.49 sec. However, we choose the value of k to obtain initial groups from the

first phase of KBCHT. The resultant number of partitions is not always the

same as k. This is because KBCHT uses the standard Kmeans in its first phase

and it may suffer from bad dropped initial prototypes thus a problem of dead

prototypes may be occurred. Fig. 3.13 shows the exact number of obtained

partitions from the first phase as the value of k increases. In case of k=15 in this

experiment, KBCHT obtains only 7 partitions from the first phase which it

takes 0.89 sec to have them. According to this 11 sub-clusters have been

(a)

(b)

(c) (d)

Figure 3.10: Analysis of KBCHT when k=2 on DS3. (a) Result from the first phase. (b) The

Shrinking process. (c) the sub-clusters which is found by KBCHT (d) The final result of KBCHT

after merging sub-clusters and identifying noise and outliers.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

0 50 100 150 200 250 300
0

50

100

150

200

250

x dim

y
 d

im

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x dim

y
 d

im

www.manaraa.com

44

considered in 2.72 sec then the merging process to find the final clusters takes

3.93 sec thus the overall time cost is 7.54 sec. However, in Fig. 3.8(a) and

Table 3.1 when we have used the value of k equals 15, we caught 14 initial

partitions from the first phase of KBCHT and 16 sub-clusters to be merged. We

evaluate the clustering accuracy for each used value of k. As illustrated in Fig.

3.14, KBCHT maintains a steady state of high accuracy rate as 100% for the

majority of the used k. For k=50, 55, 60 and 70, the clustering accuracy is

99.21%, 98.30%, 99.94% and 99.65% respectively.

Figure 3.11: Time cost (sec) of KBCHT three

phases vs. varying number of k. red: first phase,

blue: second phase and black: third phase.

(based on DS3)

Figure 3.12: Time cost (sec) of KBCHT vs.

varying number of k. (based on DS3)

Figure 3.13: Obtained number of initial

partitions from the first phase vs. varying

number of k. (based on DS3)

Figure 3.14: Measuring the clustering

accuracy (%) of KBCHT vs. varying number of

k. (based on DS3)

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

k

T
im

e
 c

o
s
t

(s
e
c
)

First Phase

Second Phase

Third Phase

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

22

k

T
im

e
 c

o
s
t

(s
e
c
)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

k

#
 p

a
rt

it
io

n
s
 f

ro
m

 f
ri
s
t

p
h
a
s
e
 o

f
K

B
C

H
T

0 10 20 30 40 50 60 70
50

55

60

65

70

75

80

85

90

95

100

k

C
lu

s
te

ri
n
g
 A

c
c
u
ra

c
y
 (

%
)

www.manaraa.com

45

We analyze the result of how k affects our KBCHT algorithm based on one

of our complex generated dataset. To do further investigation on k, thus we can

relatively make some specific judgment. We have generated relatively simple

dataset contains 800 data points distributed into 5 clusters which is named DS5

as shown in Fig. 3.15.

We have repeated the same experiment situation as we did for DS3 in which

we run KBCHT algorithm on the dataset DS5 with varying k from 2 to 70.

Fig. 3.16 shows time cost in seconds for each phase of KBCHT algorithm.

It is obvious that the third phase is the most consuming one especially when k

increased. The obtained result in Fig. 3.16 is somewhat close in its concept to

the result obtained in Fig. 3.11. Fig. 3.17 provides the overall time cost in

seconds for KBCHT algorithm in which it starts high when k=2 then it is

dropped then as k increased the execution time increased. Fig. 3.18 gives an

overview of the actual number of partitions that obtained from the first phase

since it suffers from bas initial condition that caused dead prototypes. In

addition, Fig. 3.19 shows the clustering accuracy as increasing the value of k

which maintains the highest steadily state.

Figure 3.15: Artificial dataset DS5.

50 100 150 200 250 300 350 400 450 500 550
50

100

150

200

250

300

350

400

x dim

y
 d

im

www.manaraa.com

46

Experimenting on DS3 and DS5, we can notice that the overhead is high

with respect to the execution time when k=2 and drops dramatically when k=4.

In case of clustering accuracy, we can conclude that when we have applied

some of the large values of k, the accuracy may suffer slightly in case of

complex shaped dataset.

For DS3, the best result can be achieved when k=10. Moreover, the result

may be acceptable when k is ranging between 5 and 15. On the other side of

Figure 3.16: Time cost (sec) of KBCHT three

phases vs. varying number of k. red: first phase,

blue: second phase and black: third phase.

(based on DS5)

Figure 3.17: Time cost (sec) of KBCHT vs.

varying number of k. (based on DS5)

Figure 3.18: Obtained number of initial

partitions from the first phase vs. varying

number of k. (based on DS5)

Figure 3.19: Measuring the clustering

accuracy (%) of KBCHT vs. varying number of

k. (based on DS5)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k

T
im

e
 c

o
s
t

(s
e
c
)

First Phase

Second Phase

Third Phase

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

22

k

T
im

e
 c

o
s
t

(s
e
c
)

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

k

#
 p

a
rt

it
io

n
s
 f

ro
m

 f
ri
s
t

p
h
a
s
e
 o

f
K

B
C

H
T

0 10 20 30 40 50 60 70
50

55

60

65

70

75

80

85

90

95

100

k

C
lu

s
te

ri
n
g
 A

c
c
u
ra

c
y
 (

%
)

www.manaraa.com

47

DS5, we have obtained the best result when k=4. Furthermore, when k is

between 4 and 10 the result could be acceptable. Hence, we can choose the

lower bound of k to be 5. Of course, this does not prevent the interested

researchers from using any approaches that offers auto determination of the

value of k for Kmeans algorithm. However, we recommend that the value of k

is not less than 5.

www.manaraa.com

48

Chapter 4

KBCHT: A TOPOLOGY PRESERVING

MAPPING AS A PREPROCESSING

4.1 Overview

In the former Chapter, we have proved the efficiency of our proposed KBCHT

algorithm on our generated 2-D artificial datasets. In this Chapter, we

demonstrate the performance of our KBCHT algorithm based on high

dimensional real datasets. In order to handle real datasets adequately, there high

dimensionality needs to be reduced for coping the cures of dimensionality and

other undesired features of high dimensional space [83]. The dimensionality

reduction can be used as a visualization tool of high dimensional data [83].

There are many researches that are concerned in reducing the high

dimensionality for data analysis. Furthermore, to enhance the performance of

classification or clustering on these data, their dimensionality should be

reduced before applying classification or clustering techniques [83, 93-96]. As

a consequence, we can benefit from any of the available techniques in reducing

the dimensionality of the given datasets to be engaged with our proposed

KBCHT algorithm.

In this thesis, we have used a topographic mapping technique in conjugate

with our KBCHT algorithm. A topographic mapping is a transformation of high

www.manaraa.com

49

dimensional data which preserves some structure in the data such as the points

which are mapped close to each other share some common properties while in

contrast the points which are mapped far from each other do not share a

common feature or property.

In this Chapter, we use the Generative Topographic Mapping (GTM) as a

basis preprocessing step for our proposed KBCHT algorithm.

4.2 Generative Topographic Mapping (GTM)

The GTM is a statistical model for modeling the probability density of data

points and finding non-linear mapping of high dimensional space onto low

dimensional space.

The basis of the GTM is to generate a grid of K latent points z1,z2,…,zK in

latent space. These latent points are mapped non-linearly into the data space

using a set of M basis Gaussian functions with respect to a set of weights W,

where W is M x D, and D is the dimensionality of data space. The GTM is

optimized using the Expectation-Maximization (EM) algorithm [2], [28].

4.3 Simulation Experiments

After validating the performance of the proposed algorithm on complex

artificial datasets, we have accomplished many experiments to evaluate the

efficiency of our proposed algorithm on high dimensional datasets over the

same competing algorithms as in Chapter 3. All the experiments in this thesis

have been performed using an Intel dual at 1.87 GHz with 2 GB of RAM. A

brief description of the used real datasets and simulation results will be

presented in the following sub sections.

4.3.1 Real Datasets

In our simulation experiments we have used 10 real datasets. All of these

datasets are available from the UCI machine learning repository [88]. General

information about these datasets is given in Table 4.1.

www.manaraa.com

50

Some of these real datasets have missing values and different types of

variables with different scales. Hence, they would be preprocessing before

engaging them into the clustering process (Appendix B explains how to prepare

the data before clustering).

4.3.2 Parameters Setting

As stated previously, we have to do the clustering task with no prior

information knowledge about the given dataset and this is the goal of our

proposed KBCHT algorithm. As a consequence, we have treated the given

datasets as closed black boxes. As a result in our experiments, the value of k is

set to 5 for all of the used real datasets except for the largest used dataset

(Pendigits) we use a value of 15. The same value of k is used for both our

proposed KBCHT algorithm and the spectral clustering using Nystrom

algorithm.

In this Chapter and as mentioned previously, we have used the GTM as a

basis preprocessing step for our proposed algorithm. Hence, the grid of latent

points and the grid of base functions have been chosen to be 10x10 and 3x3

respectively for all of the 10 used UCI datasets.

Moreover, for the spectral clustering using Nystrom algorithm, the value of

sigma is set to 50 and the sample size has been chosen to be 100 for all of the

Table 4.1: The Descriptions of the used UCI datasets

No. Datasets # of Objects # of Dimensions # of clusters

1 Iris 150 4 3

2 Libras movements 360 90 15

3 Wine 178 3 3

4 Glass 214 10 6

5 Pendigits 10992 16 10

6 Image Segmentation 2310 19 7

7 Spambase 4601 57 2

8 Yeast 1484 8 10

9 Arrhythmia 452 279 16

10 Dermatology 366 34 6

www.manaraa.com

51

used datasets. But we have faced a problem that the used default sample size of

100 is not valid for some datasets. Thus, we have chosen a sample size of :

150 for Wine, Glass, Yeast, Arrhythmia and Dermatology.

300 for Image segmentation.

1500 for Pendigits.

4601 for Spambase.

In which the Spambase dataset does not accept to have any sample size except

the value of its whole number of objects.

For the Affinity Propagation algorithm, we have used its default setting as

in [67].

4.3.3 Results Analysis

For illustration of the effectiveness of our algorithm, we have conducted the

same performance measurements that we already used in Chapter 3.

Table 4.2 and Fig. 4.3 summarize the obtained simulation results on real

datasets in which our proposed algorithm outperforms the other algorithms.

For Iris dataset, as an example, our proposed KBCHT using GTM has the

highest performance comparing with other algorithms. It has an accuracy of

88%. In contrast, the spectral clustering using Nystrom has an accuracy of

57.33% and the Affinity Propagation has 33.33% clustering accuracy.

Moreover, our proposed KBCHT using GTM obtained more accurate result

faster than the other algorithms.

Fig. 4.1 shows the result of GTM on the Iris dataset, where the Iris dataset

has been projected on 2 dimensional space. It is obvious that the Iris dataset has

one linearly separable cluster from the other two clusters; in which the other

two clusters are overlapped. The GTM takes 0.26 sec, the first phase of

KBCHT takes 0.06 sec, the second phase takes 0.14 sec and the last phase

executed in 0.11 sec. Hence, the overall time cost for the proposed KBCHT

using GTM is 0.57 sec.

www.manaraa.com

52

Figure 4.1: The result of using GTM on Iris dataset (the three clusters are

distinguished using different color and symbol for each cluster).

The results of experiments on the rest of the used UCI datasets are

summarized in Table 4.2. In which the performance of our proposed KBCHT

using GTM and exiting algorithms has been compared with time cost in

seconds and the clustering accuracy which is calculated as mentioned in

Chapter 3.

-3 -2 -1 0 1 2 3 4

x 10
-13

-8

-6

-4

-2

0

2

4

6
x 10

-13

www.manaraa.com

53

Table 4.2: Comparisons of the performance of our proposed KBCHT algorithm using

GTM and existing algorithms with time cost and clustering accuracy on real datasets.

Datasets Algorithms
Time Cost

(sec)

Clustering

Accuracy

(%)

Iris

Proposed KBCHT using GTM 0.57 88.00

Affinity Propagation 6.03 33.33

Spectral clustering using Nystrom 0.61 57.33

Libras

Movements

Proposed KBCHT using GTM 0.99 30.56

Affinity Propagation 14.64 6.67

Spectral clustering using Nystrom 0.94 24.72

Wine

Proposed KBCHT using GTM 0.63 93.82

Affinity Propagation 5.77 39.88

Spectral clustering using Nystrom 0.79 65.16

Glass

Proposed KBCHT using GTM 0.70 65.02

Affinity Propagation 6.81 48.59

Spectral clustering using Nystrom 1.29 63.55

Pendigits

Proposed KBCHT using GTM 103.13 38.27

Affinity Propagation - -

Spectral clustering using Nystrom 212.11 29.10

Image

Segmentation

Proposed KBCHT using GTM 3.88 31.52

Affinity Propagation 214.32 14.29

Spectral clustering using Nystrom 3.81 14.58

Spambase

Proposed KBCHT using GTM 93.03 78.91

Affinity Propagation 1172.53 60.59

Spectral clustering using Nystrom 6447.31 62.53

Yeast

Proposed KBCHT using GTM 6.80 39.80

Affinity Propagation 106.53 31.19

Spectral clustering using Nystrom 2.80 20.21

Arrhythmia

Proposed KBCHT using GTM 2.13 56.94

Affinity Propagation 13.78 13.71

Spectral clustering using Nystrom 2.38 55.75

Dermatology

Proposed KBCHT using GTM 0.97 86.07

Affinity Propagation 10.59 22.95

Spectral clustering using Nystrom 1.45 58.47

www.manaraa.com

54

For illustration purpose and easy to compare, we provide the clustering

accuracy that obtained from all the used datasets by our proposed algorithm

and the existing algorithm in Fig. 4.2. On these datasets our proposed algorithm

achieves the highest accuracy compared with other algorithms, the results

indicates the effectiveness and the strength of our proposed algorithm. From

Table 4.2 and Fig 4.2, we can notice that the Affinity Propagation algorithm

failed to provide result on the Pendigits dataset due to memory limitation which

gives an indication that the Affinity Propagation algorithm suffers from

memory difficulties.

Figure 4.2: Clustering accuracy results on real datasets

0

10

20

30

40

50

60

70

80

90

100

C
lu

st
er

in
g
 A

cc
u

ra
cy

 (
%

)

Proposed KBCHT using GTM

Affinity Propagation

Spectral Clustering Using Nystrom

www.manaraa.com

55

Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions and Future Research

In this thesis, we have introduced a new clustering algorithm named KBCHT

(Kmeans-Based Convex Hull Triangulation clustering algorithm) that is able

to detect clusters with complex non-convex shapes, different sizes, densities,

noise and outliers.

The idea behind the KBCHT is to divide the clustering task into three

phases. The first phase benefit from the first run of the widely used simple

Kmeans algorithm in which the experiments show that KBCHT gives good

results despites it is badly chosen initial conditions. Then in the second phase

KBCHT takes the initial groups from the first phase and constructs a convex

hull for each group. The vertices obtained by convex hull are shrunk until we

catch a set of sub-clusters in which the shrinking mechanism does not maintain

the convexity of processed groups. The last phase applies merging of sub-

clusters based on the Delaunay triangulation. We also have used one of the

famous topology preserving mapping methods which is the Generative

Topographic Mapping (GTM). The GTM have been used as a preprocessing

step to our proposed KBCHT algorithm. The simulation results show the

www.manaraa.com

56

superiority of our proposed algorithm over recently introduced ones in case of

the clustering accuracy and time cost.

In future works and according to obtained results in Fig. 3.11, the third

phase consumes the most time in the KBCHT since we consider all data points

in each sub-clusters, thus we will do farther analysis to benefit from the

sampling techniques to make it faster. While we have assumed the Euclidean

distance throughout this thesis, we can use general metrics as shown in

appendix C to show the effect of the used metric on our proposed algorithm.

The computed value of AVG average from Delaunay triangulation can be

recomputed each time we have a shrunk vertex according to our proposed

mechanism, thus we may have more robust value. The proposed KBCHT

algorithm can be implemented in a distributed environment. Also as have

shown in Chapter 4, the GTM uses a fixed grid of latent points and a fixed grid

of Gaussian basis function. Hence the initialization of GTM is the same despite

the used data set. This may affect the training results. Thus it needs further

investigations to adaptively choose the initial parameters based on the given

dataset. Furthermore, in future work we can conduct more experiments that

directly apply the proposed algorithm to high dimensional datasets without

preprocessing the data.

www.manaraa.com

57

Appendices

www.manaraa.com

58

Appendix A

SIMULATION ENVIRONMENT

We have implemented our proposed KBCHT algorithm using MATLAB

(version 7.9.0.529 (R2009b)). Furthermore, all the experiments in this thesis

have been performed using 64-bit windows environment of Intel dual at 1.87

GHz with 2 GB of RAM.

In fact, MATLAB (MATrix LABoratory) is a high-level language and

interactive environment that enables you to perform computationally intensive

tasks faster than with traditional programming languages such as C, C++, and

Fortran.

In addition, we have used the MATLAB implementation of both Affinity

Propagation algorithm and Spectral clustering using Nystrom algorithm. These

implementations are available from the websites (last visit on Oct. 2011):

• http://www.psi.toronto.edu/index.php?q=affinity%20propagation

• http://alumni.cs.ucsb.edu/~wychen/sc.html

www.manaraa.com

59

Appendix B

DATA PREPARATION

Dealing with missing values

The collected data can be represented in a matrix notation (two modes) as in

equation 1.1 of chapter 1. Hence, the missing values could be in records or

columns. In record: if the most of data are missing then we delete this record.

In column: if the most of data are missing then we delete this column. But if

the missing values are not too much, we have to replace these missing values

with:

1. The average value of all column data in which the missing occurred and

then is done before running clustering algorithms.

2. By making a pre clustering algorithm:

2.1 Make clusters based on all variables, then take average value of

objects that belong to the same cluster to replace the missing values.

2.2 To know which one variable (column) is more similar to the one with

missing values. Then replace the missing values with the average

value of the most similar variable.

Normalization

The attributes of the entire dataset may be collected from different scales.

Hence, the large scale ones may cause the bias. So, data should be normalized

www.manaraa.com

60

thus all attributes of the dataset would be in the same scale. Moreover, the

objects of the dataset can be described by different types of attributes such as

nominal, categorical, ordinal, interval or ratio. There are different approaches to

cluster these objects. One of them is convert attributes of different types into

attributes of the same type. A more detail of scale conversion could be found in

chapter 3 of [28].

Sampling

Sampling can be used to pick a portion of large dataset because processing the

entire dataset is too expensive and time consuming. The sampling may be

obtained randomly which is the simplest way. But to be more effective, it

should reflect an approximation of the same characteristic as the original

dataset.

Dimensionality reduction

High dimensional dataset requires a large amount of time and memory to be

analyzed. There are two major types of dimensionality reduction methods:

feature transformation and feature selection.

In feature transformation, the original high dimensional space is projected

linearly or non-linearly into a lower dimensional space.

In feature selection, this method selects a subset of meaningful dimensions

from the original high dimensions of the entire dataset.

www.manaraa.com

61

Appendix C

DISTANCE METRICS

In this section, we present some of the common used metrics. The Minkowski

(Manhatten, Euclidean, and Maximum distances), the Mahalanobis distance

and the Cosine distance.

Minkowski distance

A metric or distance is used to measure the similarity or dissimilarity between

objects. While we have assumed the Euclidean distance throughout this thesis,

a more general metric between two objects X and Y could be addressed. This

general metric is named Minkowski metric and is defined as (p-norm):

l�(�, �) = ?�|�� − �|�	
���

B
� �2 ,) ≥ 1 (Z. 1)

Where d is the dimension of objects X (x1,x2,….xd) and Y (y1,y2,….yd). Thus the

Euclidean distance is when p = 2 (2-norm). And when p = 1 (1-norm) dp is

called Manhattan or city block distance which is the shortest path between X

and Y where each segment of the path is parallel to a coordinate axis. And

when p = ∞ (∞-norm) is called maximum distance which is the distance

between X and Y corresponds to the maximum distance between the

projections of X and Y onto each of the d coordinate axes.

www.manaraa.com

62

Mahalanobis distance

Mahalanobis distance removes the distance distortion caused by linear

combinations of attributes. It is defined as:

lEK�(�, �) = �(� − �)∑�� (� − �)" (C.2)

Where ∑ is the covariance matrix of the dataset. If ∑ = Identity, this is the

Euclidean distance.

An important property of the Mahalanobis distance is that it is invariant

under nonsingular transformation. It suffers from high computation needed to

compute the covariance matrix based on all objects in the dataset.

Cosine distance

Cosine distance calculates the cosine of the angle between two vectors. It can

be defined as:

l�F�(�, �) = �. �|�||�| (Z. 3)

Where X.Y is the dot product and | . | is the (2-norm).

www.manaraa.com

63

References

[1] A. Jain, M. Murty, and P. Flynn, “Data Clustering: A review,” ACM Computing

Surveys (CSUR), Vol. 31, issue (3), pp. 264-323, Sept. 1999.

[2] R. Duda, P. Hart, and D. Stork, “Pattern Classification,” John Wiley & Sons, second

edition, 2001.

[3] A. Gersho and R. Gray, “Vector Quantization and Signal Compression,” Kulwer

Academic, Boston, 1992.

[4] M. Al- Zoubi, A. Hudaib, A. Huneiti and B. Hammo, “New Efficient Strategy to

Accelerate k-Means Clustering Algorithm,” American Journal of Applied Science,

Vol. 5, No. 9, pp. 1247-1250, 2008.

[5] M. Celebi, “Effective Initialization of K-means for Color Quantization,” Proceeding of

the IEEE International Conference on Image Processing, pp. 1649-1652, 2009.

[6] M. Borodovsky and J. McIninch, “Recognition of genes in DNA sequence with

ambiguities, “ Biosystems, Vol. 30, issues 1-3, pp. 161-171, 1993

[7] X. Wang, W. Qiu and R. H. Zamar “CLUES: A Non-parametric Clustering Method

Based on Local Shrinking,” Journal Computational Statistics & Data Analysis, Vol.

52, Issue 1, pp. 286-298, 2007.

[8] M. Khalilian, N. Mustapha, N. Suliman, and A. Mamat, “A Novel Kmeans Based

Clustering Algorithm for High Dimensional Datasets,” Proceedings of the

International Multi Conference on Engineers and Computer Scientists (IMECS 2010),

Vol. I, Hong Kong, March 2010.

[9] O. Oyelade, O. Oladipupo and I. Obagbuwa, "Application of Kmeans Clustering

Algorithm for Prediction of Students’ Academic Performance," International Journal

of Computer Science and Information Security, vol. 7, no. 1, pp. 292-295, 2010.

[10] J. Bezdek and N. Pal, “Fuzzy Models for Pattern Recognition,” IEEE press, New York,

NY, USA, 1992.

[11] D. Karaboga and C. Ozturk, “Fuzzy Clustering with Artificial Bee Colony

Algorithm,” Scientific Research and Essays, Vol. 5(14), pp. 1899-1902, 2010.

[12] J. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum

Press, New York, NY, USA, 1981.

[13] J. Bezdek, J. Keller, R. Krishnapuram, and N. Pal, “Fuzzy Models and Algorithms for

Pattern and Image Processing,” Kluwer, Dordrecht, Netherland, 1999.

[14] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler, “Fuzzy Cluster Analysis,” J.

Wiley & Sons, Chichester, England, 1999.

[15] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering Algorithm for

Large Databases,” Proceedings of ACM International Conference on Management of

Data, pp. 73-84, 1998.

[16] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering Algorithm for

Categorical Attributes,” Information Systems, Vol. 25, No. 5, pp.345-366, 2000.

www.manaraa.com

64

[17] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Clustering Method

for Very Large Databases,” Proceedings of ACM SIGMOD Workshop Research

Issues on Data Mining and Knowledge Discovery, pp. 103-114, 1996.

[18] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical Clustering Using

Dynamic Modeling,” IEEE Computer, Vol. 32, No. 8, pp. 68-75, 1999.

[19] G. Karypis and V. Kumar, “Multilevel Algorithms for Multi-Constraint Graph

Partitioning,” Technical Report, University of Minnesota, May 1998.

[20] CAO Chang-hu, and LI Ya-fei, “Improved Chameleon Algorithm for Cluster

Analysis,” Journal of Science Technology and Engineering, issues 33, 2010.

[21] P. Bhattacharya and M. L. Gavrilova, “CRYSTAL: A New Density Based Fast and

Efficient Clustering Algorithm,” Proceeding of the 3rd International Symposium on

Voronoi Diagrams in Science and Engineering, pp. 102-111, 2006.

[22] A. Foss and O. Zaiane, “A Parameterless Method for Efficiently Discovering Clusters

of Arbitrary Shape in Large Datasets,” In IEEE International Conference on Data

Mining, pp. 179-186, 2002.

[23] F. Cao, J. Liang, and G. Jiang, “An Initialization Method for Kmeans Algorithm Using

Neighborhood Model,” Journal Computers & Mathematics with Applications, Vol.

58, Issue 3, pp. 474-483, Aug. 2009.

[24] X. Liu and H. Fu, “An Effective Clustering Algorithm with Ant Colony,” Journal of

Computers, Vol. 5, No. 4, pp. 598-605, 2010.

[25] H.-J. Lin, F.-W. Yang, and Y.-T. Kao, “An Efficient GA-based Clustering Technique,”

Tamkang Journal of Science and Engineering, Vol. 8, No 2, pp. 113-122, 2005.

[26] T. Zhang, and H. Qu, “An Improved Clustering Algorithm,” Proceedings of the

Third International Symposium on Computer Science and Computational

Technology (ISCSCT ’10) Jiaozuo, China, pp. 112-115, Aug. 2010.

[27] V.-V. Vu, N. Labroche, and B. Bouchon-Meunier, “An Efficient Active Constraint

Selection Algorithm for Clustering,” 20th International Conference on Pattern

Recognition, pp.2969-2972, 2010

[28] G. Gan, Ch. Ma, and J. Wu, “Data Clustering: Theory, Algorithms, and Applications,”

ASA-SIAM series on Statistics and Applied Probability, SIAM, 2007.

[29] D. Defays, “An Efficient Algorithm for A Complete Link Method,” The Computer

Journal, Vol. 20, pp. 364-366, 1977.

[30] R. Sibson, “SLINK: an Optimally Efficient Algorithm for the Single Link Cluster

Method,” The Computer Journal, Vol. 16, No. 1, pp. 30-34, 1973.

[31] L. Kaufman, and P. Rousseeuw, “Finding Groups in Data: An Introduction to

Cluster Analysis,” John Wiley & Sons, 1990.

[32] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate

Observations,” 5th Berkeley Symp. Math. Statist. Prob., Vol. 1, pp. 281-297, 1967.

[33] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy,“ Advances in

Knowledge Discovery and Data Mining,” AAAI/MIT press, 1996.

www.manaraa.com

65

[34] R. Xu and D. Wunsch II, “Computational Intelligence in Clustering Algorithms, With

Applications,” In A. Iske and J. Levesley, Eds., Algorithms for Approximation,

Proceedings of 5th International Conference, Chester, England, UK, Springer,

Heidelberg, pp. 31-50, 2007.

[35] XindongWu and et. Al., “Top 10 Algorithms in Data Mining,” Journal of Knowledge

and Information Systems, Vol. 14, Issues 1-37, 2008.

[36] P. Hansen and B. Jaumard, “Cluster analysis and mathematical programming,”

Mathematical Programming, pp. 191-215, 1997.

[37] R. Xu, and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on

Neural Networks, pp. 645-678, 2005.

[38] B.Bahmani Firouzi, T. Niknam, and M. Nayeripour, “A New Evolutionary

Algorithm for Cluster Analysis,” Proceeding of world Academy of Science,

Engineering and Technology, Vol. 36, Dec. 2008.

[39] N. Asgharbeygi, and A. Maleki, “Geodesic Kmeans Clustering,” 19th International

Conference on Pattern Recognition, 2008.

[40] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “ A Density-based Algorithm for

Discovering Clusters in Large Spatial Data sets with Noise,” 2nd International

Conference on Knowledge Discovery and Data Mining, pp. 226-231, 1996.

[41] M. Ankerst, M. Breunig, H. P. Kriegel, and J. Sander, “OPTICS: Ordering Objects to

Identify the Clustering Structure,” Proceedings of ACM SIGMOD in International

Conference on Management of Data, pp. 49–60, 1999.

[42] E. Forgy, “Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of

Classification,” Biometrics, Vol. 21, 1965.

[43] D. Hochbaum, and D. Shmoys, “A Best Possible Heuristic for the K-Center

Problem,” Math. Oper. Res., Vol. 10, No. 2, pp. 180-184, 1985.

[44] D. Arthur, and S. Vassilvitskii, “Kmeans++: The Advantages of Careful Seeding,”

Proceeding of SODA’07, pp. 1027-1035, 2007.

[45] M. Al-Daoud, “A New Algorithm for Clustering Initialization,” Proceeding World

Academy of Science, Engineering, and Technology, Vol. 4, 2005.

[46] W. Barbakh, and C. Fyfe, “Local vs. Global Interactions in Clustering Algorithms:

Advances over Kmeans,” International Journal of knowledge-based and Intelligent

Engineering Systems, Vol. 12, 2008.

[47] Jim Z.C. Lai, and T. J. Huang, “Fast Global Kmeans Clustering Using Cluster

Membership and Inequality,” Pattern Recognition, Vol. 43, pp. 1954-1963, 2010.

[48] G. Frahling, and Ch. Sohler, “A Fast Kmeans Implementation Using Coresets,”

International Journal of Computational Geometry and Applications, Vol. 18, Issue 6,

pp. 605-625, 2008.

[49] L. Taoying, and Y. Chen, “An Improved Kmeans for Clustering Using Entropy

Weighting measures,” 7th World Congress on Intelligent Control and Automation,

2008.

www.manaraa.com

66

[50] S. Gupara, K. Rao, and V. Bhatnagar, “Kmeans Clustering Algorithm for Categorical

Attributes,” Proceeding 1st International Conf. on Data Warehousing and

Knowledge Discovery, pp. 203-208, Italy, 1999.

[51] Z. Huang, “Extensions to The Kmeans Algorithms for Clustering Large Data Sets

with Categorical Values,” Data Mining & Knowledge Discovery, Vol. 2, pp. 283-304,

1998.

[52] W. Barbakh and C. Fyfe. “Inverse Weighted Clustering Algorithm,” Computing and

Information Systems, 11(2), pp. 10-18, May 2007. ISSN 1352-9404.

[53] W. Barbakh. “The Family of Inverse Exponential Kmeans Algorithms,” Computing

and Information Systems, 11(1), pp. 1-10, February 2007. ISSN 1352-9404.

[54] W. Barbakh, and C. Fyfe, “Clustering and Visualization with Alternative Similarity

Functions.” The 7th WSEAS international conference on artificial intelligence,

knowledge, engineering and data bases, AIKED’08, pp. 238–244. University of

Cambridge, UK. 2008.

[55] A. K. Jain, “Data clustering: 50 years beyond K-means.” Pattern Recognition Letters,

Vol. 31, No. 8, pp. 651-666, 2010.

[56] B. Borah, and D.K. Bhattacharyya, “DDSC: A Density Differentiated Spatial

Clustering Technique.” Journal of Computers, Vol. 3, No. 2, pp. 72-79, 2008.

[57] A. Ram, S. Jalal, A. S. Jalal, and M. Kumar, “A Density Based Algorithm for

Discovering Density Varied Clusters in Large Spatial Databases.” International

Journal of Computer Applications, Vol. 3, No. 6, June 2010.

[58] K. Mumtaz and K. Duraiswamy “A Novel Density Based Improved Kmeans

Clustering algorithm – Dbkmeans,” International Journal on Computer Science and

Engineering (IJCSE), Vol. 2, No. 2, pp. 213-218, 2010.

[59] A. Fahim, A. Salem, F. Torkey, and M. Ramadan, “Density Clustering Based on

Radius of Data (DCBRD),” International Journal of Mathematical and Computer

Sciences, Vol. 3 No. 2, pp. 80-86, 2007.

[60] S. Kisilevich, F. Mansmann, and D. Keim, “P-DBSCAN: A Density Based Clustering

Algorithm for Exploration and Analysis of Attractive Areas of Geo-tagged Photos,”

Proceedings of the 1st International Conference and Exhibition on Computing for

Geospatial Research & Application, Washington, D.C., 2010

[61] J.J Sheu, W.M Chen, W.B Tsai and K.T Chu, “An Intelligent Initialization Method for

the Kmeans Clustering Algorithm.” International Journal of Innovative Computing,

Information and Control, Vol. 6, No. 6, pp. 2551-2566, June 2010.

[62] Convex Hull, “http://en.wikipedia.org/wiki/Convex_hull,” last visit: June, 2011.

[63] Delaunay triangulation, “http://en.wikipedia.org/wiki/Delaunay_triangulation,”

last visit: June, 2011.

[64] G. Nalbantov, P. Groenen, J. Bioch, “Nearest Convex Hull Classification,” Erasmus

University Rotterdam, Econometric Institute in its series Econometric Institute

Report, Dec, 2006. (http://repub.eur.nl/publications/index/728919268/NCH10.pdf)

www.manaraa.com

67

[65] X. Zhou, and Y. Shi, “Nearest Neighbor Convex Hull Classification Method for Face

Recognition,” Proceedings of the 9th International Conference on Computational

Science, pp. 570-577, 2009.

[66] J. Hershberger, N. Shrivastava, and S. Suri, “Summarizing Spatial Data Streams

Using ClusterHulls,” Journal of Experimental Algorithmics (JEA), Vol. 13, Feb. 2009.

[67] B. J. Frey, and D. Dueck, “Clustering by Passing Messages Between Data Points,”

Science, Vol. 315, pp. 972-949, 2007.

[68] E. Hartuv and R. Shamir, “A Clustering Algorithm Based on Graph Connectivity,”

Information Processing Letters, Vol. 76, Nos. 4-6, pp. 175-181, 2000.

[69] M. Fielder, “A Property of Eigenvectors of Nonnegative Symmetric Matrices and Its

Application to Graph Theory,” Czechoslovak Mathematical Journal, Vol. 25, No. 100,

pp.619-633, 1975.

[70] U. Luxburg, “A Tutorial on Spectral Clustering,” Statistics and Computing, Vol. 17,

No. 4, pp. 395-416, 2007.

[71] X. Zhang, J. Li, and H. Yu, “Local Density Adaptive Similarity Measurement for

Spectral Clustering,” Pattern Recognition Letters, 32, pp. 352-358, 2011.

[72] J. Santos, J. Marques de Sa, and L. Alexandre, “LEGClust: A Clustering Algorithm

Based on Layered Entropic Subgraphs,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 30, No. 1, pp. 62-75, 2008.

[73] A. Ny, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an

Algorithm,” Advances in Neural Information Processing Systems, Vol. 14, 2001.

[74] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp. 888-905, 2000.

[75] D. Verma and Meila, “A Comparison of Spectral Clustering Algorithms,” Technical

Report UW-CSE-03-05-01, Washington University, 2003.

[76] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, E. Chang, “Parallel Spectral Clustering in

Distributed Systems,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 33, No. 3, pp. 568–586, 2011.

[77] M. Wu and B. Scholkopf, “A Local Learning Approach for Clustering,” Proceedings

of NIPS, pp. 1529–1536, 2007.

[78] C. Papadimitriou and K. Steiglitz, “Combinatorial Optimization: Algorithms and

Complexity,” Dover, New York, 1998.

[79] T. Liu, C. Rosenberg and H. Rowley, “Clustering Billions of Images with Large Scale

Nearest Neighbor Search,” Proceedings of the Eighth IEEE Workshop on

Applications of Computer Vision (WACV), 2007.

[80] K. Akkaya, F. Senel and B. McLaughlan, “Clustering of Wireless Sensor and Actor

Networks Based on Sensor Distribution and Connectivity,” Journal of Parallel and

Distributed Computing, Vol. 69, No. 6, pp. 573-587, 2009.

[81] L. Portnoy, E. Eskin and S. Stolfo, “Intrusion Detection with Unlabeled Data using

Clustering,” In Proceedings of ACM CSS Workshop on Data Mining Applied to

www.manaraa.com

68

Security (DMSA), pp. 5-8, 2001.

[82] Cluster Analysis, “http://en.wikipedia.org/wiki/Cluster_analysis,” last visit: July,

2011.

[83] L. van der Maaten, E. Postma, and H. van den Herik, “Dimensionality reduction: A

Comparative Review,” Technical Report, MICC, Maastricht University, The

Netherlands, 2007.

[84] T. Khonen, “Self-Organizing Maps,” Springer, 1995.

[85] C. Bishop, M. Svensen, and C. Williams, “GTM: The Generative Topographic

Mapping,” Neural Computation, Vol. 10, No. 1, pp. 215–234, 1998.

[86] C. Bishop, M. Svensen, and C. Williams, “Developments of the Generative

Topographic Mapping,” Neurocomputing, vol. 21, No. 1, pp. 203-224, 1998.

[87] J.Y. Choi, J. Qiu, M.E. Pierce, and G. Fox, “Generative Topographic Mapping by

Deterministic Annealing,” In Proceedings of International Conference on Membrane

Computing, pp.47-56, 2010.

[88] UCI Machine Learning Repository, Available from (http://archive.ics.uci.edu/ml).

Last visit: Sep., 2011.

[89] Minimum Distance between a Point and a Line, Available from

(http://paulbourke.net/geometry/pointline/). Last visit: Sep., 2011.

[90] Convex Hull Geometric, Available from (http://www.cse.unsw.edu.au/

~lambert/java/3d/triangle.html). Last visit: Sep., 2011.

[91] C. Zhang and S. Xia, “K-means Clustering Algorithm with Improved Initial Center,”

Second International Workshop on Knowledge Discovery and Data Mining, pp. 790-

792, 2009.

[92] D. Pham, S. Dimov, and C. Nguyen, “Selection of K in K-means Clustering,”

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, Vol. 219, No. 1, pp. 103-119, 2005.

[93] G. Yu, H. Peng, J. Wei, and Q. Ma, “Enhanced Locality Preserving Projections using

Robust Path Based Similarity,” Neurocomputing, Vol. 74, No. 4, pp. 598-605, 2011.

[94] R. Harrison, and K. Pasupa, “Sparse Multinomial Kernel Discriminant Analysis

(sMKDA),” Pattern Recognition, Vol. 42, no. 9, pp. 1795-1802, 2009.

[95] L. Zhang, L. Qiao, and S. Chen, “Graph-optimized Locality Preserving Projections,”

Pattern Recognition, Vol. 43, No. 6, pp. 1993-2002, 2010.

[96] H. Liu, J. Sun, L. Liu, and H. Zhang, “Feature Selection with Dynamic Mutual

Information,” Pattern Recognition, Vol. 42, No. 7, pp. 1330-1339, 2009.

